Single Transition-to-single Transition Polarization Transfer (ST2-PT) in [15N,1H]-TROSY

Journal of Biomolecular NMR - Tập 12 - Trang 345-348 - 1998
Konstantin V. Pervushin1, Gerhard Wider1, Kurt Wüthrich1
1Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland

Tóm tắt

This paper describes the use of single transition-to-single transition polarization transfer (ST2-PT) in transverse relaxation-optimized spectroscopy (TROSY), where it affords a $$\sqrt 2$$ sensitivity enhancement for kinetically stable amide 15N-1H groups in proteins. Additional, conventional improvements of [15N,1H]-TROSY include that signal loss for kinetically labile 15N-1H groups due to saturation transfer from the solvent water is suppressed with the ‘water flip back’ technique and that the number of phase steps is reduced to two, which is attractive for the use of [15N,1H]-TROSY as an element in more complex NMR schemes. Finally, we show that the impact of the inclusion of the 15N steady-state magnetization (Pervushin et al., 1998) on the signal-to-noise ratio achieved with [15N,1H]-TROSY exceeds by up to two-fold the gain expected from the gyromagnetic ratios of 1H and 15N.

Tài liệu tham khảo

Bodenhausen, G. and Ruben, D.J. (1980) Chem. Phys. Lett. 69, 185–189. Farrar, T.C. and Stringfellow, T.C. (1996) in Encyclopedia of NMR, Grant, D.M. and Harris, R.K. (eds.), Wiley, New York, Vol. 6, pp. 410–4107. Cavanagh, J. and Rance, M. (1993) Ann. Rev. NMR Spectrosc. 27, 1–58. Goldman, M. (1984) J. Magn. Reson. 60, 437–452. Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR. 3, 627–631. Guéron, M., Leroy, J.L. and Griffey, R.H. (1983) J. Am. Chem. Soc. 105, 7262–7266. Jahnke, W. and Kessler, H. (1994) J. Biomol. NMR. 4, 735–739. Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc. 114, 10663–10665. Kay, L.E., Xu, G.Y. and Yamazaki, T. (1994) J. Magn. Reson. A 109, 129–132. Levitt, M.H. (1997) J. Magn. Reson. 126, 164–182. Muhandiram, D.R., Xu, G.Y. and Kay, L.E. (1993) J. Biomol. NMR 3, 463–470. Müller, L. (1979) J. Am. Chem. Soc. 101, 4481–4484. Palmer III, A.G., Cavanagh, J., Wright, P.E. and Rance, M. (1991) J. Magn. Reson. 93, 151–170. Percival-Smith, A., Müller, M., Affolter, M. and Gehring, W.J. (1990) EMBO J. 9, 3967–3974. Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA 94, 12366–12371. Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1998) J. Am. Chem. Soc. 120, 6394–6400. Piotto, M., Saudek, V. and Sklenar, V.J. (1992) J. Biomol. NMR 2, 661–665. Qian, Y.Q., Furukubo-Tokunaga, K., Resendez-Perez, D., Müller, M., Gehring, W.J. and Wüthrich K. (1994) J. Mol. Biol. 238, 333–345. Schleuchter, J., Sattler, M. and Griesinger, C. (1993) Angew. Chem. Engl. Ed. 32, 1489–1491. Schleuchter, J., Schwendinger, M.G., Sattler, M., Schmidt, P., Glaser, S.J., Sørensen, O.W. and Griesinger, C. (1994) J. Biomol. NMR 4, 301–306. Sørensen, O.W., Eich, G.W., Levitt, M.H., Bodenhausen, G. and Ernst R.R. (1983) Prog. NMR Spectrosc. 16, 163–192. Stonehouse, J., Shaw, G.L., Keeler, J. and Laue, E.D. (1994) J. Magn. Reson. A 107, 178–182.