Single-Nucleotide Mutations for Plant Functional Genomics

Annual Review of Plant Biology - Tập 54 Số 1 - Trang 375-401 - 2003
Steven Henikoff1,2, Luca Comai1,3
1Department of Botany, University of Washington, Seattle, Washington, 98195
2Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. [email protected]
3Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109

Tóm tắt

In the present genomics era, powerful reverse-genetic strategies are needed to elucidate gene and protein function in the context of a whole organism. However, most current techniques lack the generality and high-throughput potential of descriptive genomic approaches, such as those that rely on microarray hybridization. For example, in plant research, effective insertional mutagenesis and transgenic methods are limited to relatively few species or are inefficient. Fortunately, single-nucleotide changes can be induced in any plant by using traditional chemical mutagens, and progress has been made in efficiently detecting changes. Because base substitutions in proteins provide allelic series, and not just knockouts, this strategy can yield refined insights into protein function. Here, we review recent progress that has been made in genome-wide screening for point mutations and natural variation in plants. Its general applicability leads to the expectation that traditional mutagenesis followed by high-throughput detection will become increasingly important for plant functional genomics.

Từ khóa


Tài liệu tham khảo

Ashburner M, 1990, Drosophila, A Laboratory Handbook.

Ashburner M, 1999, Genetics, 153, 179, 10.1093/genetics/153.1.179

10.1104/pp.900036

10.1046/j.1365-313X.1993.04020403.x

10.1016/S0960-9822(02)00665-6

Bechtold N, 1998, Methods Mol. Biol., 82, 259

Bentley A, 2000, Genetics, 156, 1169, 10.1093/genetics/156.3.1169

10.1016/S1369-5266(00)00144-8

10.1016/S1369-5266(00)00145-X

10.1002/humu.27

10.1073/pnas.97.3.956

10.1016/S1367-5931(00)00171-X

10.1073/pnas.060034297

10.1104/pp.126.2.480

10.1023/A:1013722224489

10.1104/pp.124.4.1483

10.1038/ng767

10.1093/hmg/8.10.1893

10.1002/bies.1094

10.1126/science.1068275

10.1101/gad.1013902

10.1093/nar/19.23.6565

10.1023/A:1005774705893

10.1038/ng0997-119

10.1038/35093585

10.1016/0027-5107(82)90129-4

10.1089/153623102760092760

10.1093/oxfordjournals.molbev.a003774

10.1146/annurev.genom.2.1.235

10.1016/S1360-1385(01)02226-9

10.1002/1522-2683(200205)23:10<1499::AID-ELPS1499>3.0.CO;2-X

10.1046/j.1365-313x.2001.01084.x

10.1126/science.1059745

10.1104/pp.123.3.795

10.1126/science.1063051

10.1038/74542

10.1104/pp.123.2.439

10.1046/j.1365-313x.1997.12061465.x

10.1002/elps.11501301103

10.1007/BF02984195

10.1038/nbt0802-785

10.1016/S0168-9525(02)02820-2

10.1101/gr.176601

10.1101/gr.212802

Nickerson DA, 2001, Methods Mol. Biol., 175, 29

10.1093/nar/25.14.2745

10.1038/ng813

10.1093/nar/26.20.4597

10.1385/CBB:32:1-3:165

10.1006/geno.2002.6784

10.1016/S1369-5266(02)00240-6

10.1142/9789814439701_0002

10.1104/pp.123.2.427

10.1126/science.288.5473.2013

10.1016/S0076-6879(02)53071-8

Rozen S, 2000, Methods Mol. Biol., 132, 365

10.1016/S1369-5266(00)00150-3

Schuch W, 1991, Symp. Soc. Exp. Biol., 45, 117

Stadler LJ, 1932, Proc. Congr. Genet., 6th, 1, 274

10.1073/pnas.76.3.1035

10.1104/pp.126.4.1527

Till BJ, Colbert T, Tompa R, Enns L, Codomo C, et al. 2002. High-throughput TILLING for functional genomics. InPlant Functional Genomics: Methods and Protocols, ed. E Grotewald. Totowa, NJ: Humana. In press

10.1101/gr.7.10.996

Vaucheret H, 2001, J. Cell Sci., 114, 3083, 10.1242/jcs.114.17.3083

10.1016/S0378-1119(01)00532-7

10.1073/pnas.95.23.13959

10.1126/science.1071762

10.1007/s004380000421

10.1021/bi992376z

10.1126/science.1068037

10.1016/0165-1161(95)90006-3