Single-Cell Quantification of mRNA Expression in The Human Brain

Scientific Reports - Tập 9 Số 1
Sarah Jolly1, Verena Lang1, Viktor H. Koelzer2, Carlo Sala Frigerio3, Lorenza Magno1, Patricia C. Salinas4, Paul Whiting3, Ernest Palomer4
1ARUK-UCL Drug Discovery Institute, University College London, London, United Kingdom
2Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
3UK Dementia Research Institute, University College London, London, United Kingdom
4Department of Cell and Developmental Biology, University College London, London, United Kingdom

Tóm tắt

AbstractRNA analysis at the cellular resolution in the human brain is challenging. Here, we describe an optimised approach for detecting single RNA transcripts in a cell-type specific manner in frozen human brain tissue using multiplexed fluorescent RNAscope probes. We developed a new robust analytical approach for RNAscope quantification. Our method shows that low RNA integrity does not significantly affect RNAscope signal, recapitulates bulk RNA analysis and provides spatial context to transcriptomic analysis of human post-mortem brain at single-cell resolution. In summary, our optimised method allows the usage of frozen human samples from brain banks to perform quantitative RNAscope analysis.

Từ khóa


Tài liệu tham khảo

Zhang, Y. et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 89, 37–53 (2016).

Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One 13, e0209648 (2018).

Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).

Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2015).

Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of Single RNA Transcripts in Situ. Science (80-.). 280, 585–590 (1998).

Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

Koppelkamm, A., Vennemann, B., Lutz-Bonengel, S., Fracasso, T. & Vennemann, M. RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int. J. Legal Med. 125, 573–80 (2011).

Alzheimer’s Association, 2014 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 10, e47–e92 (2014).

Spires-Jones, T. L. & Hyman, B. T. The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer’s Disease. Neuron 82, 756–771 (2014).

Liddelow, S. A. & Barres, B. A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 46, 957–967 (2017).

Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2017).

Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–9 (2012).

Bialas, A. R. et al. Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature 546, 539 (2017).

Selvaraj, B. T. et al. C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity. Nat. Commun. 9, 347 (2018).

Gallego Romero, I., Pai, A. A., Tung, J. & Gilad, Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol. 12, 42 (2014).

Bayraktar, O. A. et al. Single-cell in situ transcriptomic map of astrocyte cortical layer diversity. bioRxiv 432104, https://doi.org/10.1101/432104 (2018).

Sala Frigerio, C. et al. The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques. Cell Rep. 27, 1293–1306.e6 (2019).

Carmona, S. et al. The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders. Lancet. Neurol. 17, 721–730 (2018).

Furuya, T. K. et al. Analysis of SNAP25 mRNA expression and promoter DNA methylation in brain areas of Alzheimer’s Disease patients. Neuroscience 220, 41–46 (2012).

Buechler, J. & Salinas, P. C. Deficient Wnt Signaling and Synaptic Vulnerability in Alzheimer’s Disease: Emerging Roles for the LRP6 Receptor. Front. Synaptic Neurosci. 10, 38 (2018).

Purro, S. A., Dickins, E. M. & Salinas, P. C. The secreted Wnt antagonist Dickkopf-1 is required for amyloid β-mediated synaptic loss. J. Neurosci. 32, 3492–8 (2012).

Celarain, N. et al. TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus. Clin. Epigenetics 8, 37 (2016).

Moreno-García, A., Kun, A., Calero, O., Medina, M. & Calero, M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front. Neurosci. 12, 464 (2018).

Grune, T., Jung, T., Merker, K. & Davies, K. J. A. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 36, 2519–2530 (2004).

Fernández‐Barral, A. et al. Vitamin D differentially regulates colon stem cells in patient‐derived normal and tumor organoids. FEBS J. febs. 14998, https://doi.org/10.1111/febs.14998 (2019).

Ziskin, J. L. et al. In situ validation of an intestinal stem cell signature in colorectal cancer. Gut 62, 1012–23 (2013).

Tamma, R. et al. STAT-3 RNAscope Determination in Human Diffuse Large B-Cell Lymphoma. Transl. Oncol. 12, 545–549 (2019).

Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science (80-.). 352, 1586–1590 (2016).

Liu, Q.-R. et al. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci. Rep. 7, 17410 (2017).

Wang, L. et al. GPR139 and Dopamine D2 Receptor Co-express in the Same Cells of the Brain and May Functionally Interact. Front. Neurosci. 13, 281 (2019).

Baho, E. et al. p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex. J. Neurosci. 39, 4489–4510 (2019).

Tora, D. et al. Cellular Functions of the Autism Risk Factor PTCHD1 in Mice. J. Neurosci. 37, 11993–12005 (2017).

Li, H., Illenberger, J. M., McLaurin, K. A., Mactutus, C. F. & Booze, R. M. Identification of Dopamine D1-Alpha Receptor Within Rodent Nucleus Accumbens by an Innovative RNA In situ Detection Technology. J. Vis. Exp. e57444, https://doi.org/10.3791/57444 (2018).

Fiala, J. C. & Harris, K. M. Dendrite structure, Dendrite, Oxford University Press (1999).

West, M. J., Coleman, P. D., Flood, D. G. & Troncoso, J. C. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet (London, England) 344, 769–72 (1994).

Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

Rydbirk, R. et al. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases. Sci. Rep. 6, 37116 (2016).

Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034 (2002).