Sản xuất Dầu Từ Tế Bào Đơn Giản Từ Các Dịch Thủy Phân Inulin Bằng Nấm Men Mới Được Phát Hiện Papiliotrema laurentii AM113 Để Sản Xuất Biodiesel

Applied Biochemistry and Biotechnology - Tập 184 - Trang 168-181 - 2017
Guangyuan Wang1, Lin Liu1, Wenxing Liang2
1College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
2College of Agronomy and Plant Protection, the Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, China

Tóm tắt

Dầu vi sinh vật là một trong những nguồn cung cấp thay thế hấp dẫn nhất cho sản xuất biodiesel. Trong nghiên cứu này, một chủng nấm men mới được phân lập, AM113 của Papiliotrema laurentii, đã được xác định là một tác nhân tạo lipid tiềm năng, có khả năng tích lũy một lượng lớn lipid nội bào từ các dịch thủy phân inulin. P. laurentii AM113 có khả năng sản xuất 54,6% (w/w) dầu nội bào trong tế bào và 18,2 g/l khối lượng tế bào khô trong quá trình lên men mẻ nuôi bổ sung. Năng suất lipid và sinh khối lần lượt là 0,14 và 0,25 g cho mỗi gram đường tiêu thụ. Năng suất sản xuất lipid là 0,092 g dầu mỗi giờ. Thành phần axit béo được sản xuất bao gồm C14:0 (0,9%), C16:0 (10,8%), C16:1 (9,7%), C18:0 (6,5%), C18:1 (60,3%) và C18:2 (11,8%). Biodiesel thu được từ lipid được chiết xuất có thể được đốt cháy tốt. Nghiên cứu này không chỉ cung cấp một ứng cử viên đầy hứa hẹn cho sản xuất dầu tế bào đơn giản, mà còn có thể tạo điều kiện cho sản xuất biodiesel hiệu quả hơn.

Từ khóa

#dầu vi sinh vật #sản xuất biodiesel #Papiliotrema laurentii #lipid #inulin

Tài liệu tham khảo

Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031–1051. Wang, G., Guo, L., Liang, W., Chi, Z., & Liu, L. (2017). Systematic analysis of the lysine acetylome reveals diverse functions of lysine acetylation in the oleaginous yeast Yarrowia lipolytica. AMB Express. doi:10.1186/s13568-017-0393-2. Huang, C., Chen, X. F., Xiong, L., Chen, X. D., Ma, L. L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances, 31(2), 129–139. Liang, Y., Jarosz, K., Wardlow, A. T., Zhang, J., & Cui, Y. (2014). Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Applied Biochemistry and Biotechnology, 173(8), 2086–2098. Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., & Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Processing Technology, 90(12), 1502–1514. Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5. Zeng, L., He, Y., Jiao, L., Li, K., & Yan, Y. (2017). Preparation of biodiesel with liquid synergetic lipases from rapeseed oil deodorizer distillate. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-017-2463-y. Li, M., Liu, G. L., Chi, Z., & Chi, Z. M. (2010). Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass & Bioenergy, 34(1), 101–107. Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90(4), 1219–1227. Chen, X., Li, Z., Zhang, X., Hu, F., Ryu, D. D., & Bao, J. (2009). Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Applied Biochemistry and Biotechnology, 159(3), 591–604. da Silva, T. L., Feijão, D., & Reis, A. (2010). Using multi-parameter flow cytometry to monitor the yeast Rhodotorula glutinis CCMI 145 batch growth and oil production towards biodiesel. Applied Biochemistry and Biotechnology, 162(8), 2166–2176. Tampitak, S., Louhasakul, Y., Cheirsilp, B., & Prasertsan, P. (2015). Lipid production from hemicellulose and holocellulose hydrolysate of palm empty fruit bunches by newly isolated oleaginous yeasts. Applied Biochemistry and Biotechnology, 176(6), 1801–1814. Sitepu, I. R., Garay, L. A., Sestric, R., Levin, D., Block, D. E., German, J. B., & Boundy-Mills, K. L. (2014). Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnology Advances, 32(7), 1336–1360. Christophe, G., Deo, J. L., Kumar, V., & Nouaille, R. (2012). Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Applied Biochemistry and Biotechnology, 167(5), 1270–1279. Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82(2), 211–220. Faskin, M., Saghafian, A., Aydogan, M. N., & Arslan, N. (2015). Microbial lipid production by cold-adapted oleaginous yeast Yarrowia lipolytica B9 in non-sterile whey medium. Biofuels Bioproducts & Biorefining, 9(5), 595–605. Wei, Z., Zeng, G., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus. Applied Biochemistry and Biotechnology, 175(2), 1234–1246. Chi, Z., Zheng, Y., Jiang, A., & Chen, S. (2011). Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Applied Biochemistry and Biotechnology, 165(2), 442–453. Zhao, C. H., Chi, Z., Zhang, F., Guo, F. J., Li, M., Song, W. B., & Chi, Z. M. (2011). Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresource Technology, 102(10), 6128–6133. Wang, G. Y., Zhang, Y., Chi, Z., Liu, G. L., Wang, Z. P., & Chi, Z. M. (2015). Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Applied Microbiology and Biotechnology, 99(4), 1637–1645. Wang, G. Y., Chi, Z., Song, B., Wang, Z. P., & Chi, Z. M. (2012). High level lipid production by a novel inulinase-producing yeast Pichia guilliermondii Pcla22. Bioresource Technology, 124, 77–82. Wang, C. L., Yang, L., Xin, F. H., Liu, Y. Y., & Chi, Z. M. (2014). Evaluation of single cell oil from Aureobasidium pullulans var. melanogenum P10 isolated from mangrove ecosystems for biodiesel production. Process Biochemistry, 49(5), 725–731. Kurtzman, C. P., & Fell, J. W. (2000). The yeasts. A taxonomic study. 4th revised and enlarged ed (pp. 222–360). Amsterdam: Elsevier Science B.V. Chi, Z., Ma, C., Wang, P., & Li, H. F. (2007). Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresource Technology, 98(3), 534–538. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1955). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. Spiro, R. G. (1966). Analysis of sugars found in glycoproteins. Methods in Enzymology, 8, 3–26. Gong, F., Sheng, J., Chi, Z., & Li, J. (2007). Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. Journal of Industrial Microbiology & Biotechnology, 34(3), 179–185. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable & Sustainable Energy Reviews, 16(1), 143–169. Tanimura, A., Takashima, M., Sugita, T., Endoh, R., Kikukawa, M., Yamaguchi, S., Sakuradani, E., Ogawa, J., & Shima, J. (2014). Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresource Technology, 153(2), 230–235. Athenstaedt, K., & Daum, G. (2006). The life cycle of neutral lipids: synthesis, storage and degradation. Cellular and Molecular Life Sciences, 63(12), 1355–1369. Athenstaedt, K. (2010). Isolation and characterization of lipid particles from yeast. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid Microbiology (pp. 4224–4229). Berlin, Heidelberg: Springer-Verlag. Papanikolaou, S., Chatzifragkou, A., Fakas, S., Galiotou-Panayotou, M., Komaitis, M., Nicaud, J. M., & Aggelis, G. (2009). Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. European Journal of Lipid Science and Technology, 111(12), 1221–1232. Papanikolaou, S., Chevalot, I., Komaitis, M., Aggelis, G., & Marc, I. (2001). Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Van Leeuwenhoek, 80(3), 215–224. Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., Del Cardayre, S. B., & Keasling, J. D. (2010). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463(7280), 559–562. Zhao, C. H., Tong, Z., Mei, L., & Chi, Z. M. (2010). Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochemistry, 45(7), 1121–1126. Taskin, M., Ortucu, S., Aydogan, M. N., & Arslan, N. P. (2016). Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable Energy, 99, 198–204. Zhao, C. H., Cui, W., Liu, X. Y., Chi, Z. M., & Madzak, C. (2010). Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metabolic Engineering, 12(6), 510–517. Sajjadi, B., Raman, A. A. A., & Arandiyan, H. (2016). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renewable & Sustainable Energy Reviews, 63, 62–92.