Simvastatin protects heart function and myocardial energy metabolism in pulmonary arterial hypertension induced right heart failure
Tóm tắt
The favorable effect of simvastatin on pulmonary arterial hypertension (PAH) has been well defined despite the unknown etiology of PAH. However, whether simvastatin exerts similar effects on PAH induced right heart failure (RHF) remains to be determined. We aimed to investigate the function of simvastatin in PAH induced RHF. Rats in the RHF and simvastatin groups were injected intraperitoneally with monocrotaline to establish PAH-induced RHF model. The expression of miR-21-5p in rat myocardium was detected and miR-21-5p expression was inhibited using antagomiRNA. The effect of simvastatin on hemodynamic indexes, ventricular remodeling of myocardial tissues, myocardial energy metabolism, and calmodulin was explored. Dual-luciferase reporter system was used to verify the binding relationship between miR-21-5p and Smad7. In addition, the regulatory role of simvastatin in Smad7, TGFBR1 and Smad2/3 was investigated. Simvastatin treatment improved hemodynamic condition, myocardial tissue remodeling, and myocardial energy metabolism, as well as increasing calmodulin expression in rats with PAH-induced RHF. After simvastatin treatment, the expression of miR-21-5p in myocardium of rats was decreased significantly. miR-21-5p targeted Smad7 and inhibited the expression of Smad7. Compared with RHF rats, the expressions of TGFBR1 and Smad2/3 in myocardium of simvastatin-treated rats were decreased significantly. Collectively, we provided evidence that simvastatin can protect ATPase activity and maintain myocardial ATP energy reserve through the miR-21-5p/Smad/TGF-β axis, thus ameliorating PAH induced RHF.
Tài liệu tham khảo
Absi M, Eid BG, Ashton N, Hart G, Gurney AM (2019) Simvastatin causes pulmonary artery relaxation by blocking smooth muscle ROCK and calcium channels: evidence for an endothelium-independent mechanism. PLoS One 14:e0220473. https://doi.org/10.1371/journal.pone.0220473
Ahmed AM (2017) Inhibition of inducible nitric oxide synthase (iNOS) by simvastatin attenuates cardiac hypertrophy in rats. Folia Morphol (Warsz) 76:15–27. https://doi.org/10.5603/FM.a2016.0043
Bae HK, Lee H, Kim KC, Hong YM (2016) The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure. Korean J Pediatr 59:262–270. https://doi.org/10.3345/kjp.2016.59.6.262
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/s0092-8674(04)00045-5
Bienertova-Vasku J, Novak J, Vasku A (2015) MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J Am Soc Hypertens 9:221–234. https://doi.org/10.1016/j.jash.2014.12.011
Chang WT, Hsu CH, Huang TL, Tsai YC, Chiang CY, Chen ZC, Shih JY (2018) MicroRNA-21 is associated with the severity of right ventricular dysfunction in patients with hypoxia-induced pulmonary hypertension. Acta Cardiol Sin 34:511–517. https://doi.org/10.6515/ACS.201811_34(6).20180613A
Chartoumpekis D, Ziros PG, Psyrogiannis A, Kyriazopoulou V, Papavassiliou AG, Habeos IG (2010) Simvastatin lowers reactive oxygen species level by Nrf2 activation via PI3K/Akt pathway. Biochem Biophys Res Commun 396:463–466. https://doi.org/10.1016/j.bbrc.2010.04.117
Chen Q, Chen H, Zheng D, Kuang C, Fang H, Zou B, Zhu W, Bu G, Jin T, Wang Z, Zhang X, Chen J, Field LJ, Rubart M, Shou W, Chen Y (2009) Smad7 is required for the development and function of the heart. J Biol Chem 284:292–300. https://doi.org/10.1074/jbc.M807233200
Cheng Y, Zhang C (2010) MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 3:251–255. https://doi.org/10.1007/s12265-010-9169-7
Chuppa S, Liang M, Liu P, Liu Y, Casati MC, Cowley AW, Patullo L, Kriegel AJ (2018) MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in Cardiorenal syndrome type 4. Kidney Int 93:375–389. https://doi.org/10.1016/j.kint.2017.05.014
Correction to: miR-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension (2017) Circ Res 120:e6. https://doi.org/10.1161/RES.0000000000000136
Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J et al (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208:535–548. https://doi.org/10.1084/jem.20101812
Ding H, Wang Y, Hu L, Xue S, Wang Y, Zhang L, . . . Li P (2020) Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep 40. doi:https://doi.org/10.1042/BSR20191653
Ferreira RR, Abreu RDS, Vilar-Pereira G, Degrave W, Meuser-Batista M, Ferreira NVC, da Cruz Moreira O, da Silva Gomes NL, Mello de Souza E, Ramos IP, Bailly S, Feige JJ, Lannes-Vieira J, de Araújo-Jorge TC, Waghabi MC (2019) TGF-beta inhibitor therapy decreases fibrosis and stimulates cardiac improvement in a pre-clinical study of chronic Chagas' heart disease. PLoS Negl Trop Dis 13:e0007602. https://doi.org/10.1371/journal.pntd.0007602
Fung E, Sugianto P, Hsu J, Damoiseaux R, Ganz T, Nemeth E (2013) High-throughput screening of small molecules identifies hepcidin antagonists. Mol Pharmacol 83:681–690. https://doi.org/10.1124/mol.112.083428
Ghio S, Pica S, Klersy C, Guzzafame E, Scelsi L, Raineri C, Turco A, Schirinzi S, Visconti LO (2016) Prognostic value of TAPSE after therapy optimisation in patients with pulmonary arterial hypertension is independent of the haemodynamic effects of therapy. Open Heart 3:e000408. https://doi.org/10.1136/openhrt-2016-000408
Ghio S, Guazzi M, Scardovi AB, Klersy C, Clemenza F, Carluccio E et al (2017) Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail 19:873–879. https://doi.org/10.1002/ejhf.664
Gomez-Arroyo JG, Farkas L, Alhussaini AA, Farkas D, Kraskauskas D, Voelkel NF, Bogaard HJ (2012) The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol 302:L363–L369. https://doi.org/10.1152/ajplung.00212.2011
Gryshkova V, Fleming A, McGhan P, De Ron P, Fleurance R, Valentin JP, Nogueira da Costa A (2018) miR-21-5p as a potential biomarker of inflammatory infiltration in the heart upon acute drug-induced cardiac injury in rats. Toxicol Lett 286:31–38. https://doi.org/10.1016/j.toxlet.2018.01.013
Gu S, Feng XH (2018) TGF-beta signaling in cancer. Acta Biochim Biophys Sin Shanghai 50:941–949. https://doi.org/10.1093/abbs/gmy092
Hill SE, Nguyen E, Ukachukwu CU, Freeman DM, Quirk S, Lieberman RL (2017) Metal ion coordination in the E. coli Nudix hydrolase dihydroneopterin triphosphate pyrophosphatase: new clues into catalytic mechanism. PLoS one 12: e0180241. https://doi.org/10.1371/journal.pone.0180241
Jain A, McNamara PJ (2015) Persistent pulmonary hypertension of the newborn: advances in diagnosis and treatment. Semin Fetal Neonatal Med 20:262–271. https://doi.org/10.1016/j.siny.2015.03.001
Jeong EM, Liu M, Sturdy M, Gao G, Varghese ST, Sovari AA, Dudley SC Jr (2012) Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol 52:454–463. https://doi.org/10.1016/j.yjmcc.2011.09.018
Jiang X, Yuan L, Li P, Wang J, Wang P, Zhang L, Sun B, Sun W (2015) Effect of simvastatin on 5-HT and 5-HTT in a rat model of pulmonary artery hypertension. Cell Physiol Biochem 37:1712–1724. https://doi.org/10.1159/000438536
Kawut SM, Bagiella E, Lederer DJ, Shimbo D, Horn EM, Roberts KE et al (2011a) Randomized clinical trial of aspirin and simvastatin for pulmonary arterial hypertension: ASA-STAT. Circulation 123:2985–2993. https://doi.org/10.1161/CIRCULATIONAHA.110.015693
Kawut SM, Bagiella E, Shimbo D, Lederer DJ, Al-Naamani N, Roberts KE et al (2011b) Rationale and design of a phase II clinical trial of aspirin and simvastatin for the treatment of pulmonary arterial hypertension: ASA-STAT. Contemp Clin Trials 32:280–287. https://doi.org/10.1016/j.cct.2010.12.005
Kuang T, Wang J, Pang B, Huang X, Burg ED, Yuan JX, Wang C (2010) Combination of sildenafil and simvastatin ameliorates monocrotaline-induced pulmonary hypertension in rats. Pulm Pharmacol Ther 23:456–464. https://doi.org/10.1016/j.pupt.2010.02.003
Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97. https://doi.org/10.1093/nar/gkt1248
Liu M, Liu H, Dudley SC Jr (2010) Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ Res 107:967–974. https://doi.org/10.1161/CIRCRESAHA.110.220673
Medrek SK, Sahay S (2018) Ethnicity in pulmonary arterial hypertension: possibilities for novel phenotypes in the age of personalized medicine. Chest 153:310–320. https://doi.org/10.1016/j.chest.2017.08.1159
Mishra S, Yadav T, Rani V (2016) Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol 98:12–23. https://doi.org/10.1016/j.critrevonc.2015.10.003
Mohamed Sa'dom SA, Hashim H, Maran S, Mohd Zain MR, Wan Ibrahim WP, Wong AR et al (2016) Screening of SMAD7 in Malay patients with ventricular septal defect. Am J Cardiovasc Dis 6:138–145
Ni J, Shi Y, Li L, Chen J, Li L, Li M, Zhu J, Zhu Y, Fan G (2017) Cardioprotection against heart failure by Shenfu injection via TGF-beta/Smads signaling pathway. Evid Based Complement Alternat Med 2017:7083016–7083016. https://doi.org/10.1155/2017/7083016
Nogueira-Ferreira R, Vitorino R, Ferreira R, Henriques-Coelho T (2015) Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: A network approach. Pulm Pharmacol Ther 35:8–16. https://doi.org/10.1016/j.pupt.2015.09.007
Qiao L, Hu S, Liu S, Zhang H, Ma H, Huang K, Li Z, Su T, Vandergriff A, Tang J, Allen T, Dinh PU, Cores J, Yin Q, Li Y, Cheng K (2019) microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Invest 129:2237–2250. https://doi.org/10.1172/JCI123135
Santos-Ribeiro D, Mendes-Ferreira P, Maia-Rocha C, Adao R, Leite-Moreira AF, Bras-Silva C (2016) Pulmonary arterial hypertension: basic knowledge for clinicians. Arch Cardiovasc Dis 109:550–561. https://doi.org/10.1016/j.acvd.2016.03.004
Sun T, Li Y, Li T, Ma H, Guo Y, Jiang X, Hou M, Huang S, Chen Z (2017) JIP1 and JIP3 cooperate to mediate TrkB anterograde axonal transport by activating kinesin-1. Cell Mol Life Sci 74:4027–4044. https://doi.org/10.1007/s00018-017-2568-z
Sweatt AJ, Hedlin HK, Balasubramanian V, Hsi A, Blum LK, Robinson WH, Haddad F, Hickey PM, Condliffe R, Lawrie A, Nicolls MR, Rabinovitch M, Khatri P, Zamanian RT (2019) Discovery of distinct immune phenotypes using machine learning in pulmonary arterial hypertension. Circ Res 124:904–919. https://doi.org/10.1161/CIRCRESAHA.118.313911
Venturi E, Lindsay C, Lotteau S, Yang Z, Steer E, Witschas K, Wilson AD, Wickens JR, Russell AJ, Steele D, Calaghan S, Sitsapesan R (2018) Simvastatin activates single skeletal RyR1 channels but exerts more complex regulation of the cardiac RyR2 isoform. Br J Pharmacol 175:938–952. https://doi.org/10.1111/bph.14136
Wang X, Hughes AC, Brandao HB, Walker B, Lierz C, Cochran JC et al (2018) In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC Condensin complex. Mol Cell 71:841–847.e5. https://doi.org/10.1016/j.molcel.2018.07.006
Wang R, Zhang J, Wang S, Wang M, Ye T, Du Y, . . . Sun X (2019) The Cardiotoxicity Induced by Arsenic Trioxide is Alleviated by Salvianolic Acid A via Maintaining Calcium Homeostasis and Inhibiting Endoplasmic Reticulum Stress. Molecules 24. doi:https://doi.org/10.3390/molecules24030543
Wehrens XH, Lehnart SE, Marks AR (2005) Intracellular calcium release and cardiac disease. Annu Rev Physiol 67:69–98. https://doi.org/10.1146/annurev.physiol.67.040403.114521
Wiel C, Lallet-Daher H, Gitenay D, Gras B, Le Calve B, Augert A et al (2014) Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun 5:3792. https://doi.org/10.1038/ncomms4792
Xiao X, Chang G, Liu J, Sun G, Liu L, Qin S, Zhang D (2016) Simvastatin ameliorates ventricular remodeling via the TGFbeta1 signaling pathway in rats following myocardial infarction. Mol Med Rep 13:5093–5101. https://doi.org/10.3892/mmr.2016.5178
Xue J, Zhou D, Poulsen O, Hartley I, Imamura T, Xie EX, Haddad GG (2018) Exploring miRNA-mRNA regulatory network in cardiac pathology in Na(+)/H(+) exchanger isoform 1 transgenic mice. Physiol Genomics 50:846–861. https://doi.org/10.1152/physiolgenomics.00048.2018
Ye L, Jiang Y, Zuo X (2015) Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure. Biochem Biophys Res Commun 467:164–170. https://doi.org/10.1016/j.bbrc.2015.09.067
Ye B, Liu B, Yang L, Huang G, Hao L, Xia P, Wang S, du Y, Qin X, Zhu P, Wu J, Sakaguchi N, Zhang J, Fan Z (2017) Suppression of SRCAP chromatin remodelling complex and restriction of lymphoid lineage commitment by Pcid2. Nat Commun 8:1518. https://doi.org/10.1038/s41467-017-01788-7
Yuan J, Chen H, Ge D, Xu Y, Xu H, Yang Y, Gu M, Zhou Y, Zhu J, Ge T, Chen Q, Gao Y, Wang Y, Li X, Zhao Y (2017) Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem 42:2207–2219. https://doi.org/10.1159/000479995
Zopf DA, das Neves LA, Nikula KJ, Huang J, Senese PB, Gralinski MR (2011) C-122, a novel antagonist of serotonin receptor 5-HT2B, prevents monocrotaline-induced pulmonary arterial hypertension in rats. Eur J Pharmacol 670:195–203. https://doi.org/10.1016/j.ejphar.2011.08.015
Zuccala ES, Satchwell TJ, Angrisano F, Tan YH, Wilson MC, Heesom KJ, Baum J (2016) Quantitative phospho-proteomics reveals the Plasmodium merozoite triggers pre-invasion host kinase modification of the red cell cytoskeleton. Sci Rep 6:19766. https://doi.org/10.1038/srep19766