Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains
Tóm tắt
The efficient microbial utilization of lignocellulosic hydrolysates has remained challenging because this material is composed of multiple sugars and also contains growth inhibitors such as acetic acid (acetate). Using an engineered consortium of strains derived from Escherichia coli C and a synthetic medium containing acetate, glucose, xylose and arabinose, we report on both the microbial removal of acetate and the subsequent simultaneous utilization of the sugars. In a first stage, a strain unable to utilize glucose, xylose and arabinose (ALS1392, strain E. coli C ptsG manZ glk crr xylA araA) removed 3 g/L acetate within 30 hours. In a subsequent second stage, three E. coli strains (ALS1370, ALS1371, ALS1391), which are each engineered to utilize only one sugar, together simultaneously utilized glucose, xylose and arabinose. The effect of non-metabolizable sugars on the metabolism of the target sugar was minimal. Additionally the deletions necessary to prevent the consumption of one sugar only minimally affected the consumption of a desired sugar. For example, the crr deletion necessary to prevent glucose consumption reduced xylose and arabinose utilization by less than 15% compared to the wild-type. Similarly, the araA deletion used to exclude arabinose consumption did not affect xylose- and glucose-consumption. Despite the modest reduction in the overall rate of sugar consumption due to the various deletions that were required to generate the consortium of strains, the approach constitutes a significant improvement in any single-organism approach to utilize sugars found in lignocellulosic hydrolysate in the presence of acetate.
Tài liệu tham khảo
Wiselogel A, Tyson J, Johnsson D: Biomass feedstock resources and composition. Handbook on bioethanol: production and utilization. Edited by: Wyman CE. 1996, Taylor and Francis, Washington, DC., 105-118.
Zaldivar J, Nielsen J, Olsson L: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001, 56: 17-34. 10.1007/s002530100624.
Wenzl HFJ: The Chemical Technology of Wood. 1970, Academic Press, New York and London, 399-
Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO: Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng. 2000, 69: 526-536. 10.1002/1097-0290(20000905)69:5<526::AID-BIT7>3.0.CO;2-E.
Sedlak M, Edenberg HJ, Ho NWY: DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces. Enzyme Micro Technol. 2003, 33: 19-28. 10.1016/S0141-0229(03)00067-X.
Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF: Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose-utilization pathway. Microb Cell Fact. 2009, 8: 40-10.1186/1475-2859-8-40.
Hector RE, Dien BS, Cotta MA, Qureshi N: Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J Ind Microbiol Biotechnol. 2011, 38: 1193-1202. 10.1007/s10295-010-0896-1.
Nichols NN, Dien BS, Bothast RJ: Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol. 2001, 56: 120-125. 10.1007/s002530100628.
Kimata K, Takahashi H, Inada T, Postma P, Aiba H: cAMP receptor protein-cAMP plays a crucial role in glucose–lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc Natl Acad Sci USA. 1997, 94: 12914-12919. 10.1073/pnas.94.24.12914.
Dien BS, Nichols NN, Bothast RJ: Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid. J Industr Microbiol. 2002, 29: 221-227. 10.1038/sj.jim.7000299.
García-Aparicio MP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ: Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol. 1998, 129: 278-288.
Tengborg C, Galbe M, Zacchi G: Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Micro Technol. 2001, 28: 835-844. 10.1016/S0141-0229(01)00342-8.
Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR: Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol. 1998, 180: 767-772.
Sandoval NR, Mills TY, Zhang M, Gill RT: Elucidating acetate tolerance in E. coli using a genome-wide approach. Metab Eng. 2011, 13: 214-224. 10.1016/j.ymben.2010.12.001.
Eiteman MA, Lee SA, Altman E: A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng. 2008, 2: 3-10.1186/1754-1611-2-3.
Chen Y: Development and application of co-culture for ethanol produciton by co-fermentation of glucose and xylose: a systematic review. J Industr Micro Biotechnol. 2011, 38: 581-597. 10.1007/s10295-010-0894-3.
Eiteman MA, Lee SA, Altman R, Altman E: A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol Bioeng. 2009, 102: 822-827. 10.1002/bit.22103.
Lakshmanaswamy AK, Rajaraman E, Eiteman MA, Altman E: Microbial removal of acetate selectively from sugar mixtures. J Ind Microbiol Biotechnol. 2011, 38: 1477-1484. 10.1007/s10295-010-0932-1.
Postma PW, Lengeler JW, Jacobson GR: Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993, 57: 543-594.
Huber F, Erni B: Membrane topology of the mannose transporter of Escherichia coli K12. Eur J Biochem. 1996, 239: 810-817. 10.1111/j.1432-1033.1996.0810u.x.
Curtis SJ, Epstein W: Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol. 1975, 122: 1189-1199.
Flores N, Xiao J, Berry A, Bolivar F, Valle F: Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotech. 1996, 14: 620-623. 10.1038/nbt0596-620.
Korner H, Sofia HJ, Zumft WG: Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev. 2003, 27: 559-592. 10.1016/S0168-6445(03)00066-4.
Lawlis VB, Dennis MS, Chen EY, Smith DH, Henner DJ: Cloning and sequencing of the xylose isomerase and xylulose genes of Escherichia coli. Appl Environ Microbiol. 1984, 47: 15-21.
Englesberg E: Enzymatic characterization of 17 L-arabinose negative mutants of Escherichia coli. J Bacteriol. 1961, 81: 996-1009.
Ebright RH: Transcription activation at Class I CAP-dependent promoters. Mol Microbiol. 1993, 8: 797-802. 10.1111/j.1365-2958.1993.tb01626.x.
Gosset G, Zhang Z, Nayyar S, Cuevas WA, Sauer MH: Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol. 2004, 186: 3516-3524. 10.1128/JB.186.11.3516-3524.2004.
Zhang X, Schleif R: Catabolite gene activator protein mutations affecting activity of the araBAD promoter. J Bacteriol. 1998, 180: 195-200.
Krin E, Sismeiro O, Danchin A, Bertin PN: The regulation of Enzyme IIAGlc expression controls adenylate cyclase activity in Escherichia coli. Microbiology. 2002, 148: 1553-1559.
Scholte BJ, Postma PW: Mutation in the crp Gene of Salmonella typhimurium which interferes with inducer exclusion. J Bacteriol. 1980, 141: 751-757.
Kang HY, Song S, Park C: Priority of pentose utilization at the level of transcription: Arabinose, xylose, and ribose operons. Mol Cells. 1998, 8: 318-323.
Hernández-Montalvo V, Valle F, Bolivar F, Gosset G: Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol. 2001, 57: 186-191. 10.1007/s002530100752.
Desai TA, Rao CV: Regulation of arabinose and xylose metabolism in Escherichia coli. Appl Environ Microbiol. 2010, 76: 1524-1532. 10.1128/AEM.01970-09.
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006, 2: 1-11.
Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci. 2000, 97: 6640-6645. 10.1073/pnas.120163297.
Eiteman MA, Chastain MJ: Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chem Acta. 1997, 338: 69-75. 10.1016/S0003-2670(96)00426-6.