Simultaneous untargeted and targeted metabolomics profiling of underivatized primary metabolites in sulfur-deficient barley by ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry
Tóm tắt
Metabolomics based on mass spectrometry analysis are increasingly applied in diverse scientific domains, notably agronomy and plant biology, in order to understand plants’ behaviors under different stress conditions. In fact, these stress conditions are able to disrupt many biosynthetic pathways that include mainly primary metabolites. Profiling and quantifying primary metabolites remain a challenging task because they are poorly retained in reverse phase columns, due to their high polarity and acid–base properties. The aim of this work is to develop a simultaneous untargeted/targeted profiling of amino acids, organic acids, sulfur metabolites, and other several metabolites. This method will be applied on sulfur depleted barley, in order to study this type of stress, which is difficult to detect at early stage. Also, this method aims to explore the impact of this stress on barley’s metabolome. Ultra-high performance liquid chromatography–high resolution mass spectrometry-based method was successfully applied to real samples allowing to discriminate, detect, and quantify primary metabolites in short-runs without any additional sampling step such as derivatization or ion pairing. The retention of polar metabolites was successfully achieved using modified C18 columns with high reproducibility (relative standard deviation below 10%). The quantification method showed a high sensitivity and robustness. Furthermore, high resolution mass spectrometry detection provided reliable quantification based on exact mass, eliminating potential interferences, and allowing the simultaneous untargeted metabolomics analysis. The untargeted data analysis was conducted using Progenesis QI software, performing alignment, peak picking, normalization and multivariate analysis. The simultaneous analysis provided cumulative information allowing to discriminate between two plant batches. Thus, discriminant biomarkers were identified and validated. Simultaneously, quantification confirmed coherently the relative abundance of these biomarkers. A fast and innovated simultaneous untargeted/targeted method has successfully been developed and applied to sulfur deficiency on barley. This work opens interesting perspectives in both fundamental and applied research. Biomarker discovery give precious indication to understand plant behavior during a nutritional deficiency. Thus, direct or indirect measurement of these compounds allows a real time fertilization management and encounter the challenges of sustainable agriculture.
Tài liệu tham khảo
Lei Z, Huhman DV, Sumner LW. Mass spectrometry strategies in metabolomics. J Biol Chem. 2011;286:25435–42.
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, et al. Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev. 2016;35:620–49. https://doi.org/10.1002/mas.21449.
Jorge TF, Duro N, da Costa M, Florian A, Ramalho JC, Ribeiro-Barros AI, et al. GC-TOF-MS analysis reveals salt stress-responsive primary metabolites in Casuarina glauca tissues. Metabolomics. 2017;13:1–13.
Schäfer M, Brütting C, Baldwin IT, Kallenbach M. High-throughput quantification of more than 100 primary- and secondary-metabolites, and phytohormones by a single solid-phase extraction based sample preparation with analysis by UHPLC-HESI-MS/MS. Plant Methods. 2016;12:30. https://doi.org/10.1186/s13007-016-0130-x.
Chia DW, Yoder TJ, Reiter WD, Gibson SI. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species. Planta. 2000;211:743–51.
Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J. Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant. 2008;132:209–19.
Carfagna S, Vona V, Di Martino V, Esposito S, Rigano C. Nitrogen assimilation and cysteine biosynthesis in barley: evidence for root sulphur assimilation upon recovery from N deprivation. Environ Exp Bot. 2011;71:18–24. https://doi.org/10.1016/j.envexpbot.2010.10.008.
Zuber H, Poignavent G, Le Signor C, Aimé D, Vieren E, Tadla C, et al. Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation and seed traits in Medicago truncatula. Plant J. 2013;76:982–96.
Arrivault S, Guenther M, Ivakov A, Feil R, Vosloh D, Van Dongen JT, et al. Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J. 2009;59:824–39.
Erro J, Zamarreno AM, Yvin JC, Garcia-Mina JM. Determination of organic acids in tissues and exudates of maize, lupin, and chickpea by high-performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2009;57:4004–10.
Rellán-Álvarez R, Hernández LE, Abadía J, Álvarez-Fernández A. Direct and simultaneous determination of reduced and oxidized glutathione and homoglutathione by liquid chromatography-electrospray/mass spectrometry in plant tissue extracts. Anal Biochem. 2006;356:254–64.
Tolstikov VV, Fiehn O. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem. 2002;301:298–307.
Liu Z, Rochfort S. A fast liquid chromatography–mass spectrometry (LC–MS) method for quantification of major polar metabolites in plants. J Chromatogr B Anal Technol Biomed Life Sci. 2013;912:8–15. https://doi.org/10.1016/j.jchromb.2012.10.040.
Chang YL, Hsieh CL, Huang YM, Chiou WL, Kuo YH, Tseng MH. Modified method for determination of sulfur metabolites in plant tissues by stable isotope dilution-based liquid chromatography–electrospray ionization–tandem mass spectrometry. Anal Biochem. 2013;442:24–33. https://doi.org/10.1016/j.ab.2013.07.026.
Guan X, Hoffman B, Dwivedi C, Matthees DP. A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J Pharm Biomed Anal. 2003;31:251–61.
Le A, Ng A, Kwan T, Cusmano-Ozog K, Cowan TM. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography–tandem mass spectrometry (LC–MS/MS). J Chromatogr B Anal Technol Biomed Life Sci. 2014;944:166–74. https://doi.org/10.1016/j.jchromb.2013.11.017.
Horňák K, Schmidheiny H, Pernthaler J. High-throughput determination of dissolved free amino acids in unconcentrated freshwater by ion-pairing liquid chromatography and mass spectrometry. J Chromatogr A. 2016;1440:85–93.
Hammermeister DE, Serrano J, Schmieder P, Kuehl DW. Characterization of dansylated glutathione, glutathione disulfide, cysteine and cystine by narrow bore liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:503–8.
Dziagwa-Becker MM, Ramos JMM, Topolskia JK, Oleszek WA. Determination of free amino acids in plants by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). Anal Methods. 2015;7:7574–81. https://doi.org/10.1016/j.jchromb.2015.10.040.
Camera E, Rinaldi M, Briganti S, Picardo M, Fanali S. Simultaneous determination of reduced and oxidized glutathione in peripheral blood mononuclear cells by liquid chromatography–electrospray mass spectrometry. J Chromatogr B Biomed Sci Appl. 2001;757:69–78.
Dell’mour M, Jaitz L, Oburger E, Puschenreiter M, Koellensperger G, Hann S. Hydrophilic interaction LC combined with electrospray MS for highly sensitive analysis of underivatized amino acids in rhizosphere research. J Sep Sci. 2010;33:911–22.
Mathon C, Barding GA, Larive CK. Separation of ten phosphorylated mono-and disaccharides using HILIC and ion-pairing interactions. Anal Chim Acta. 2017;972:102–10. https://doi.org/10.1016/j.aca.2017.03.029.
t’Kindt R, Morreel K, Deforce D, Boerjan W, Van Bocxlaer J. Joint GC–MS and LC–MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:3572–80.
Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc. 2006;1:387–96.
Zhen S, Zhou J, Deng X, Zhu G, Cao H, Wang Z, et al. Metabolite profiling of the response to high-nitrogen fertilizer during grain development of bread wheat (Triticum aestivum L.). J Cereal Sci. 2016;69:85–94. https://doi.org/10.1016/j.jcs.2016.02.014.
Richter JA, Erban A, Kopka J, Zörb C. Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Plant Sci. 2015;233:107–15. https://doi.org/10.1016/j.plantsci.2015.01.006.
Obata T, Fernie AR. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci. 2012;69:3225–43.
Bedair M, Sumner LW. Current and emerging mass-spectrometry technologies for metabolomics. TrAC Trends Anal Chem. 2008;27:238–50. https://doi.org/10.1016/J.TRAC.2008.01.006.
Drapal M, Farfan-Vignolo ER, Gutierrez OR, Bonierbale M, Mihovilovich E, Fraser PD. Identification of metabolites associated with water stress responses in Solanum tuberosum L. clones. Phytochemistry. 2017;135:24–33. https://doi.org/10.1016/j.phytochem.2016.12.003.
Baniasadi H, Vlahakis C, Hazebroek J, Zhong C, Asiago V. Effect of environment and genotype on commercial maize hybrids using LC/MS-based metabolomics. J Agric Food Chem. 2014;62:1412–22.
Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, et al. Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry. 2013;87:65–77. https://doi.org/10.1016/j.phytochem.2012.11.009.
t’Kindt R, De Veylder L, Storme M, Deforce D, Van Bocxlaer J. LC–MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: Optimization of pre-LC–MS procedure parameters. J Chromatogr B Anal Technol Biomed Life Sci. 2008;871:37–43.
Grata E, Guillarme D, Glauser G, Boccard J, Carrupt PA, Veuthey JL, et al. Metabolite profiling of plant extracts by ultra-high-pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry. J Chromatogr A. 2009;1216:5660–8.
Liu H, Lai H, Jia X, Liu J, Zhang Z, Qi Y, et al. Comprehensive chemical analysis of Schisandra chinensis by HPLC–DAD–MS combined with chemometrics. Phytomedicine. 2013;20:1135–43. https://doi.org/10.1016/j.phymed.2013.05.001.
Zhou Y, Huang S-X, Pu J-X, Li J-R, Ding L-S, Chen D-F, et al. Ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometric procedure for qualitative and quantitative analyses of nortriterpenoids and lignans in the genus Schisandra. J Pharm Biomed Anal. 2011;56:916–27. https://doi.org/10.1016/j.jpba.2011.07.045.
García-Villalba R, Tomás-Barberán F, Fança-Berthon P, Roller M, Zafrilla P, Issaly N, García-Conesa M-T. Targeted and untargeted metabolomics to explore the bioavailability of the secoiridoids from a seed/fruit extract (Fraxinus angustifolia Vahl) in human healthy volunteers: a preliminary study. Molecules. 2015;20:22202–19. https://doi.org/10.3390/molecules201219845.
Mechri B, Tekaya M, Cheheb H, Attia F, Hammami M. Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: a possible mechanism for regulation of defense molecules. J Plant Physiol. 2015;185:40–3. https://doi.org/10.1016/j.jplph.2015.06.015.
Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 2005;7:581–91.
Zhao FJ, Hawkesford MJ, Warrilow AGS, McGrath SP, Clarkson DT. Responses of two wheat varieties to sulphur addition and diagnosis of sulphur deficiency. Plant Soil. 1996;181:317–27. https://doi.org/10.1007/BF00012066.
Zhao FJ, Hawkesford MJ, Mcgrath SP. Sulphur assimilation and effects on yield and quality of wheat. J Cereal Sci. 1999;30:1–17. https://doi.org/10.1006/jcrs.1998.0241.
Kruger NJ, Troncoso-Ponce MA, Ratcliffe RG. 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat Protoc. 2008;3:1001–12. https://doi.org/10.1038/nprot.2008.64.
Lafaye A, Labarre J, Tabet J, Ezan E, Junot C, De Pharmacologie S, et al. Liquid chromatography–mass spectrometry and N metabolic labeling for quantitative metabolic profiling. Anal Chem. 2005;77:2026–33.
Hsieh CL, Yeh KW, De Kok LJ, Pan RN, Kuo YH, Tseng MH. Simultaneous determination of sulphur metabolites in Arabidopsis thaliana via LC-ESI-MS/MS and 34S-metabolic labelling. Phytochem Anal. 2012;23:324–31.
Kellmann M, Muenster H, Zomer P, Mol H. Full scan MS in comprehensive qualitative and quantitative residue analysis in food and feed matrices: how much resolving power is required? J Am Soc Mass Spectrom. 2009;20:1464–76. https://doi.org/10.1016/J.JASMS.2009.05.010.
Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–8.
Hoefgen R. Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J Exp Bot. 2004;55:1283–92. https://doi.org/10.1093/jxb/erh136.
Mertz ET, Singleton VL, Garey CL. The effect of sulfur deficiency on the amino acids of alfalfa. Arch Biochem Biophys. 1952;38:139–45. https://doi.org/10.1016/0003-9861(52)90017-9.