Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
Tóm tắt
A rapid kinetic method for the simultaneous determination of levodopa, dopamine, and dobutamine was examined and developed. It was based on a consecutive reaction of a reduction of Cu(II) to Cu(I) by catecholamines, followed by the complexation of Cu(I) with neocuproine to form a yellow product in an acetic acid-acetate buffer. Spectrophotometric data were recorded at 453 nm (wavelength at the yellow complex absorption maximum) for 300 s. Linear calibrations were obtained in the concentration ranges of (0.08–1.44) × 10−5 mol L−1, (0.08–1.44) × 10−5 mol L−1, and (0.16–1.44) × 10−5 mol L−1 for levodopa, dopamine, and dobutamine, respectively. A variety of multivariate calibration models was developed for simultaneous analysis of the three analytes; while most models produced satisfactory prediction results for synthetic samples, the hybrid linear analysis method was arguably the best-performing (relative prediction error, RPET = 6.6 %). The proposed method was applied to an analysis of spiked rabbit serum samples and the results showed good agreement with the high performance liquid chromatography measurements.
Tài liệu tham khảo
Bahram, M., & Afkhami, A. (2008). Recent applications of kinetic methods in multi-component analysis. Journal of Iranian Chemical Society, 5, 352–366.
Berger, A. J., Koo, T.-W., Itzkan, I., & Feld, M. S. (1998). An enhanced algorithm for linear multivariate calibration. Analytical Chemistry, 70, 623–627. DOI: 10.1021/ac970721p.
Brereton, R. G. (2003). Chemometrics: Data analysis for the laboratory and chemical plant. Chichester, UK: Wiley.
Chernyshov, D. V., Shvedene, N. V., & Antipova, E. R. (2008). Ionic liquid-based miniature electrochemical sensors for the voltammetric determination of catecholamines. Analytica Chimica Acta, 621, 178–184. DOI: 10.1016/j.aca.2008.05.042.
Fang, H., Li, H., Li, Y., Zhao, J., & Xu, J. (2009). Simultaneous spectrophotometric determination of three tolualdehyde isomers by artificial neural networks and its comparison with partial least squares. Chinese Journal of Chemistry, 27, 546–550. DOI: 10.1002/cjoc.200990089.
Goicoechea, H. C., & Olivieri, A. C. (1999). Determination of bromhexine in cough-cold syrups by absorption spectrophotometry and multivariate calibration using partial leastsquares and hybrid linear analyses. Application of a novel method of wavelength selection. Talanta, 49, 793–800. DOI: 10.1016/S0039-9140(99)00080-6.
Gottwald, M. D., & Aminoff, M. J. (2011). Therapies for dopaminergic-induced dyskinesias in parkinson disease. Annals of Neurology, 69, 919–927. DOI: 10.1002/ana.22423.
Haaland, D. M., & Thomas, E. V. (1988). Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry, 60, 1193–1202. DOI: 10.1021/ac00162a020.
Hasani, M., Yaghoubi, L., & Abdollahi, H. (2007). A kinetic spectrophotometric method for simultaneous determination of glycine and lysine by artificial neural networks. Analytical Biochemistry, 365, 74–81. DOI: 10.1016/j.ab.2007.02.010.
Iversen, S. D., & Iversen, L. L. (2007). Dopamine: 50 years in perspective. Trends in Neuroscience, 30(5), 188–193. DOI: 10.1016/j.tins.2007.03.002.
Kvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiological Reviews, 89, 535–606. DOI: 10.1152/physrev.00042.2006.
Mohamed, G. G., Nour-El-Dien, F. A., & El-Nahas, R. G. (2009). Spectrophotometric and standard addition methods for quantitative determination of dopamine hydrochloride and levodopa in tablets and ampoules. Afinidad, 66, 243–251.
Mulugeta, M., Wibetoe, G., Engelsen, C. J., & Asfaw, A. (2009). Multivariate optimization and simultaneous determination of hydride and non-hydride-forming elements in samples of a wide pH range using dual-mode sample introduction with plasma techniques: application on leachates from cement mortar material. Analytical and Bioanalytical Chemistry, 393, 1015–1024. DOI: 10.1007/s00216-008-2494-x.
National standard of the People’s Republic of China (2007). Determination of dopamine hydrochloride in feeds-high performance liquid chromatography. GB/T 21036-2007. Beijing, China.
Nemeček, P., Ďurčeková, T., Mocák, J., & Waisser, K. (2009). Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction. Chemical Papers, 63, 84–91. DOI: 10.2478/s11696-008-0089-9.
Ni, Y., Huang, C., & Kokot, S. (2004). Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides. Chemometrics and Intelligent Laboratory Systems, 71, 177–193. DOI: 10.1016/j.chemolab.2004.02.003.
Ni, Y., & Wang, Y. (2007). Application of chemometrics methods to the simultaneous kinetic spectrophotometric determination of iodate and periodate based on consecutive reactions. Microchemical Journal, 86, 216–226. DOI: 10.1016/j.microc.2007.03.008.
Nour El-Dien, F. A., Frag, E. Y. A., & Mohamed, G. G. (2010). Coupling reaction and complex formation for the spectrophotometric determination of physiologically active catecholamines in bulk, pharmaceutical preparations and urine samples of schizophrenic patients. Drug Testing and Analysis, 2, 234–242. DOI: 10.1002/dta.123.
Parissis, J. T., Rafouli-Stergiou P., Stasinos, V., Psarogiannakopoulos, P., & Mebazaa, A. (2010). Inotropes in cardiac patients: update 2011. Current Opinion in Critical Care, 16, 432–441. DOI: 10.1097/MCC.0b013e32833e10fb.
Park, H., & Paeng, I. R. (2011). Development of direct competitive enzyme-linked aptamer assay for determination of dopamine in serum. Analytica Chimica Acta, 685, 65–73. DOI: 10.1016/j.aca.2010.11.010.
Rezaei, B., Khayamian, T., & Mokhtari, A. (2009). Simultaneous determination of codeine and noscapine by flow-injection chemiluminescence method using N-PLS regression. Journal of Pharmaceutical and Biomedical Analysis, 49, 234–239. DOI: 10.1016/j.jpba.2008.10.036.
Safavi, A., & Tohidi, M. (2007). Simultaneous kinetic determination of levodopa and carbidopa by H-point standard addition method. Journal of Pharmaceutical and Biomedical Analysis, 44, 313–318. DOI: 10.1016/j.jpba.2007.02.020.
Samadi-Maybodi, A., & Darzi, S. K. H. N. (2008). Simultaneous determination of vitamin B12 and its derivatives using some of multivariate calibration 1 (MVC1) techniques. Spectrochimica Acta Part A: Molecular and Biomolecular spectroscopy, 70, 1167–1172. DOI: 10.1016/j.saa.2007.10.037.
Shaikh, S. M. T., Manjunatha, D. H., Harikrishna, K., Ramesh, K. C., Sudhir Kumar, R., & Seetharamappa, J. (2008). Diazocoupling reaction for the spectrophotometric determination of physiologically active catecholamines in bulk and pharmaceutical preparations. Journal of Analytical Chemistry, 6, 637–642. DOI: 10.1134/S106193480807006X.
Shin, D. D., Brandimarte, F., De Luca, L., Sabbah, H. N., Fonarow, G. C., Filippatos, G., Komajda, M., & Gheorghiade, M. (2007). Review of current and investigational pharmacologic agents for acute heart failure syndromes. The American Journal of Cardiology, 99(2), S4–S23. DOI: 10.1016/j.amjcard.2006.11.025.
Shore, P. A., & Olin, J. S. (1958). Identification and chemical assay of norepinephrine in brain and other tissues. Journal of Pharmacology and Experimental Therapeutics, 122, 295–300.
Thanvi, B. R., & Lo, T. C. N. (2004). Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgraduate Medical Journal, 80, 452–458. DOI: 10.1136/pgmj.2003.013912.
Tütem, E., Apak, R., & Baykut, F. (1991). Spectrophotometric determination of trace amounts of copper(I) and reducing agents with neocuproine in the presence of copper(II). Analyst, 116, 89–94. DOI: 10.1039/an9911600089.
Workman, J., & Mark, H. (2007). Limitations in analytical accuracy, Part I: Horwitz’s trumpet. Spectroscopy, 22(2), 18–24.
Xu, L., & Schechter, I. (1997). A calibration method free of optimism factor number selection for automated multivariate analysis. Experimental and theoretical study. Analytical Chemistry, 69, 3722–3730. DOI: 10.1021/ac970402y.
Yu, C., Tang, Y., Han, X., & Zheng, X. (2006). Sensitive assay for catecholamines in pharmaceutical samples and blood plasma using flow injection chemiluminescence analysis. Analytical Sciences, 22, 25–28. DOI: 10.2116/analsci.22.25.