Simultaneous Fenton‐like Ion Delivery and Glutathione Depletion by MnO<sub>2</sub>‐Based Nanoagent to Enhance Chemodynamic Therapy

Angewandte Chemie - Tập 130 Số 18 - Trang 4996-5000 - 2018
Lisen Lin1,2,3, Jibin Song1,2,3, Liang Song2, Kaimei Ke2, Yijing Liu1, Zijian Zhou1, Zheyu Shen1, Juan Li2, Zhèn Yáng1, Wei Tang1, Gang Niu1, Huanghao Yang2, Xiaoyuan Chen1
1Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892 USA
2MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
3these authors contributed equally to this work

Tóm tắt

AbstractChemodynamic therapy (CDT) utilizes iron‐initiated Fenton chemistry to destroy tumor cells by converting endogenous H2O2 into the highly toxic hydroxyl radical (.OH). There is a paucity of Fenton‐like metal‐based CDT agents. Intracellular glutathione (GSH) with .OH scavenging ability greatly reduces CDT efficacy. A self‐reinforcing CDT nanoagent based on MnO2 is reported that has both Fenton‐like Mn2+ delivery and GSH depletion properties. In the presence of HCO3, which is abundant in the physiological medium, Mn2+ exerts Fenton‐like activity to generate .OH from H2O2. Upon uptake of MnO2‐coated mesoporous silica nanoparticles (MS@MnO2 NPs) by cancer cells, the MnO2 shell undergoes a redox reaction with GSH to form glutathione disulfide and Mn2+, resulting in GSH depletion‐enhanced CDT. This, together with the GSH‐activated MRI contrast effect and dissociation of MnO2, allows MS@MnO2 NPs to achieve MRI‐monitored chemo–chemodynamic combination therapy.

Từ khóa


Tài liệu tham khảo

 

10.1038/nrd2803

10.1073/pnas.0611142104

10.1002/anie.201611783

10.1002/ange.201611783

10.1002/anie.201408472

10.1002/ange.201408472

 

10.1002/anie.201510031

10.1002/ange.201510031

Tang Z., 2018, Adv. Mater.

10.1039/b922183m

10.1038/6198

 

Szatrowski T. P., 1991, Cancer Res., 51, 794

10.1002/anie.201504186

10.1002/ange.201504186

10.1211/jpp.59.11.0013

10.1073/pnas.95.21.12468

 

10.1038/nchembio.1416

10.1021/acs.nanolett.6b04060

10.1021/ja905938a

10.1021/acs.nanolett.6b04269

10.1038/nnano.2016.164

 

10.1039/B813725K

10.1016/j.apcatb.2010.11.022

10.1021/jacs.5b11561

 

10.1039/C5CS00224A

Kuppusamy P., 2002, Cancer Res., 62, 307

Russo A., 1986, Cancer Res., 46, 2845

 

Arrick B. A., 1984, Cancer Res., 44, 4224

10.1016/S0074-7696(08)60166-7

 

10.1038/bjc.1993.484

10.1038/nature07733

10.1002/(SICI)1096-9101(1998)23:3<161::AID-LSM5>3.0.CO;2-N

10.1021/ja2100774

10.1002/adma.201001417

10.1002/adma.201504617

10.1021/nn506640h

 

10.1016/S1011-1344(02)00279-8

10.1002/adma.201505869

10.1039/c3tb21479f

10.1002/anie.201605509

10.1002/ange.201605509

10.1021/ja046572r

 

10.1038/ncomms7907

10.1016/S0891-5849(00)00302-6

10.1021/ja2083569