Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium

Transportation Science - Tập 35 Số 2 - Trang 107-123 - 2001
Hai Yang1, Qiang Meng1, Michael G.H. Bell2
1Department of Civil Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
2Department of Civil Engineering, The University of Newcastle upon Tyne, NE1 7RU, United Kingdom

Tóm tắt

This article proposes an optimization model for simultaneous estimation of an origin-destination (O-D) matrix and a travel-cost coefficient for congested networks in a logit-based stochastic user equilibrium (SUE). The model is formulated in the form of a standard differentiable, nonlinear optimization problem with analytical stochastic user equilibrium constraints. Explicit expressions of the derivatives of the stochastic user equilibrium constraints with respect to origin-destination demand, link flow, and travel-cost coefficient are derived and computed efficiently through a stochastic network-loading approach. A successive quadratic-programming algorithm using the derivative information is applied to solve the simultaneous estimation model. This algorithm converges to a Karusch-Kuhn-Tucker point of the problem under certain conditions. The proposed model and algorithm are illustrated with a numerical example.

Từ khóa


Tài liệu tham khảo

Akamastu T., 1996, Transportation Res., 30, 369, 10.1016/0191-2615(96)00003-3

10.1111/j.1467-9787.1988.tb01371.x

10.1111/j.1467-9787.1990.tb00082.x

10.1016/0191-2615(94)90018-3

Bazaraa M. S., 1993, Nonlinear Programming: Theory and Algorithms

Bell M. G. H., 1984, Transportation Res., 18, 497

10.1016/0191-2615(91)90010-G

10.1016/0191-2615(95)00005-X

10.1016/0191-2615(94)00025-U

10.1016/0191-2615(89)90028-3

10.1016/0191-2615(84)90012-2

Cascetta E., 1988, Transportation Res., 18, 189

10.1016/0041-1647(77)90002-8

10.1287/trsc.11.3.253

10.1016/0191-2615(94)90031-0

10.1016/0041-1647(71)90012-8

10.1016/0041-1647(77)90069-7

10.1016/0191-2615(80)90004-1

10.1016/0191-2615(83)90018-8

10.1016/0191-2615(88)90035-5

10.1016/0191-2615(89)90009-X

Fletcher R., 1980, Practical Methods of Optimization. Vol. 1. Unconstrained Optimization; Vol. 2 Constrained Optimization

10.1111/j.1475-3995.1995.tb00012.x

10.1007/BF01580879

Gill P. E., 1981, Practical Optimization

10.1007/BF02242139

10.1016/0191-2615(82)90029-7

Liu S., 1996, Transportation Res., 30, 287

10.1016/0191-2615(83)90030-9

10.1287/trsc.19.3.278

Nguyen S. Estimating an OD matrix from network data: A network equilibrium approach. (1977) (Publication 87, CRT, University of Montreal, Montreal, Canada)

Nguyen S., 1984, Transportation Planning Models, 363

10.1007/BF01593790

10.1007/978-3-642-68874-4_12

10.1007/BF01580880

10.1287/trsc.8.2.117

Sheffi Y., 1985, Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods

10.1287/trsc.16.1.45

10.1016/0191-2615(94)90008-6

10.1016/0191-2615(87)90037-3

Turnquist M., 1979, Transportation Res. Record, 730, 1

10.1016/0191-2615(81)90047-3

10.1016/0191-2615(80)90008-9

Willumsen L. G., 1984, Proc. 9th International Symposium on Transportation and Traffic Theory, 397

10.1016/0191-2615(95)00003-V

Yang H., 1996, Proc. 7th World Conference on Transport Research, Vol. 2, 99

10.1016/0191-2615(94)90029-9

10.1016/0191-2615(92)90008-K