Mô phỏng sự thẩm thấu của hồ xi măng bão hòa dựa trên mô hình mạng lỗ mới

Yong Zhou1, Yuxuan Yang1, Bigya Gyawali1, Weiping Zhang1
1College of Civil Engineering, Department of Structural Engineering, Tongji University, Shanghai, People’s Republic of China

Tóm tắt

Tóm tắtBài báo này trình bày mô phỏng sự thẩm thấu của hồ xi măng bão hòa dựa trên một mô hình mạng lỗ mới. Đầu tiên, một mô hình hydrat hóa 2D của các hạt xi măng đã được phát triển bằng cách mở rộng công trình của Zheng et al. 2005 để cung cấp nền tảng cho việc xây dựng mạng lỗ. Thứ hai, việc thiết lập mô hình mạng lỗ và mô phỏng sự thẩm thấu của hồ xi măng bão hòa đã được thực hiện. Các lỗ không đều giữa bất kỳ hai hạt xi măng đã hydrat hóa nào đã được tuyến tính hóa với khoảng cách rõ ràng như là đường kính của các lỗ. Các lỗ ống thẳng đã được kết nối với nhau để tạo thành mô hình mạng. Trong quá trình này, biểu đồ Voronoi có trọng số đã được sử dụng để hoạt động trên biểu thức đồ họa của các hạt xi măng đã hydrat hóa. Sự thẩm thấu của nước trong hồ xi măng bão hòa đã được mô phỏng để xác minh mô hình mạng lỗ. Cuối cùng, các yếu tố bao gồm tỷ lệ nước-ximăng, nhiệt độ phản ứng, thời gian phản ứng và kích thước hạt xi măng đã được khảo sát số học để xác định ảnh hưởng đến sự thẩm thấu của nước.

Từ khóa

#Mô phỏng #hồ xi măng #thẩm thấu #mô hình mạng lỗ #nhiệt độ phản ứng #tỷ lệ nước-ximăng

Tài liệu tham khảo

Al-Shemmeri, T. (2012) Engineering Fluid Mechanics. Bookboon.

Arns, J. Y., et al. (2004). Effect of network topology on relative permeability. Transport in Porous Media, 55, 21–46.

Banthia, N., & Mindess, S. (1989). Water permeability of cement paste. Cement and Concrete Research, 19, 727–736.

Bentz, D. P. (1997). Three-dimensional computer simulation of Portland cement hydration and microstructure development. Journal of the American Ceramic Society, 80(1), 3–21. https://doi.org/10.1111/j.1151-2916.1997.tb02785.x

Bentz, D. P. (2005) ‘CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package. Version 3.0’, NIST Interagency/Internal Report(NISTIR).

Bentz, D. P., & Garboczi, E. J. (1991). A Digitised simulation model for microstructural development. Ceramic Transactions, 16, 211–226.

Beton-Kalender 2010 (2010). Ernst & Sohn.

Bishnoi, S., & Scrivener, K. L. (2009). μic: A new platform for modelling the hydration of cements. Cement and Concrete Research, 39(4), 266–274. https://doi.org/10.1016/j.cemconres.2008.12.002

Blunt, M., King, M. J. & Scher, H. (1992) ‘Simulation and theory of two-phase flow in porous media’, Physical Review A, 46.

Bowyer, A. (1981) Computing Dirichlet Tessellations. The Computer Journal, 24(2), pp. 162–166. https://doi.org/10.1093/comjnl/24.2.162.

Bullard, J. W., & Garboczi, E. J. (2006). A model investigation of the influence of particle shape on Portland cement hydration. Cement and Concrete Research, 36(6), 1007–1015. https://doi.org/10.1016/j.cemconres.2006.01.003

Danielsson, U. (1960). Heat of Hydration of Cement as Affected by Water-Cement Ratio. In 4th International Symposium on the Chemistry of Cement. Vol.1, pp. 519–526.

Dong, R., et al. (2009). Research and implementation of discrete generation algorithm for line segment weighted Voronoi diagrams. Computer Application and Software, 26(7), 245–247. (in Chinese).

Dullien, F. A. L. (2012). Porous media: Fluid transport and pore structure. Academic Press. https://doi.org/10.1016/0300-9467(81)80049-4

Fatt, I. (1956). The network model of porous media I. Capillary pressure characteristics, Trans AIME, 207(144).

Garboczi, E. J., & Bentz, D. P. (1992). Computer simulation of the diffusivity of cement-based materials. Journal of Materials Science, 27(8), 2083–2092. https://doi.org/10.1007/BF01117921

Jennings, H. M., & Johnson, S. K. (1986). Simulation of microstructure development during the hydration of a cement compound. Journal of the American Ceramic Society, 69, 790–795.

Jin, R. (2015). Experimental study on water penetration of cement stone and concrete. Zhejiang: Zhejiang University of Technology. (in Chinese).

Koenders, E A. B. (1997). Simulation of volume changes in hardening cemet-based materials. Delft University of Technology, Delft

Larson, R. G., Scriven, L. E., & Davis, H. T. (1981). Percolation theory of two phase flow in porous media. Chemical Engineering Science, 36, 57–73.

Lee, D. T., & Lin, A. K. (1986). Generalized Delaunay triangulation for planar graphs. Discrete & Computational Geometry, 1, 201–217. https://doi.org/10.1007/BF02187695

Lee, D. T., & Schachter, B. J. (1980). Two algorithms for constructing a Delaunay triangulation. International Journal of Computer & Information Sciences. https://doi.org/10.1007/BF00977785

Lewis, B. A., & Robinson, J. S. (1978). Triangulation of planar regions with applications. Computer Journal, 21(4), 324–332. https://doi.org/10.1093/comjnl/21.4.324

Li, X., & Xu, Y. (2019). Microstructure-based modeling for water permeability of hydrating cement paste. Journal of Advanced Concrete Technology, 17, 405–418. https://doi.org/10.3151/jact.17.405

Lian, H., Tong, L., & Chen, E. (1996). Fundamentals of phase studies of building materials. Tsinghua: Tsinghua University Press. (in Chinese).

Liu, R., et al. (2016). Estimating permeability of porous media based on modified Hagen-Poiseuille flow in tortuous capillaries with variable lengths. Microfluidics and Nanofluidics, 20(8), 120. https://doi.org/10.1007/s10404-016-1783-5

Marchand, J. and Gerard, B. (1997). Microstructure-based models for predicting transport properties. RILEM Report, 16(41–81).

Neville, A. M., Li, G., & Ma, Z. (1983). Performance of concrete. Beijing: China Building Industry Press. (in Chinese).

Ozyildirim, C. (1998). Effects of temperature on the development of low permeability in concretes. Charlottesville, Virginia.

Phung, Q. T., et al. (2013). Determination of water permeability of cementitious materials using a controlled constant flow method. Construction and Building Materials, 47(5), 1488–1496. https://doi.org/10.1016/j.conbuildmat.2013.06.074

Pignat, C., Navi, P., & Scrivener, K. (2005). Simulation of cement paste microstructure hydration, pore space characterization and permeability determination. Materials and Structures, 38, 459–466.

Stroeven, M. (1999). Discrete numerical modelling of composite materials. Ph. D. Thesis, DUP.

Stroeven, P., et al. (2012). Porosimetry by random node structuring in virtual concrete. Image Analysis and Stereology, 31, 79–87.

Sun, X., Dai, Q., & Ng, K. (2014). Computational investigation of pore permeability and connectivity from transmission X-ray microscope images of a cement paste specimen. Construction and Building Materials, 68, 240–251. https://doi.org/10.1016/j.conbuildmat.2014.06.049

Van Breugel, K. (1991). Simulation of hydration and formation of structure in hardening cement-based materials. Delft University of Technology.

van Breugel, K. (1992). Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory. Cement and Concrete Research, 25(2), 319–331. https://doi.org/10.1016/0008-8846(95)00017-8

van Breugel, K. (1995). Numerical simulation of hydration and microstructural development in hardening cement-based materials. (II) applications. Cement and Concrete Research, 25(3), 522–530. https://doi.org/10.1016/0008-8846(95)00041-A

Wang, L. (2013). Building materials science. China Water Resources and Hydropower Press. (in Chinese)

Wu, F. (2015). Prediction of water permeability coefficient of cement stone based on cement hydration simulation. Zhejiang University of Technology. (in Chinese).

Ye, G. (2003). Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials, 11th international congress on the chemistry of cement. Delft University of Technology.

Ye, G., Lura, P., & van Breugel, K. (2006). Modelling of water permeability in cementitious materials. Materials and Structures, 39(9), 877–885.

Ye, G., Van Breugel, K., & Fraaij, A. L. A. (2003). Three-dimensional microstructure analysis of numerically simulated cementitious materials. Cement and Concrete Research, 33(2), 215–222.

Yip, M., Mohle, J., & Bolander, J. E. (2005). Automated modeling of three-dimensional structural components using irregular lattices. Computer-Aided Civil and Infrastructure Engineering, 20(6), 393–407. https://doi.org/10.1111/j.1467-8667.2005.00407.x

Yu, P., et al. (2018). Microstructure-based fractal models for heat and mass transport properties of cement paste. International Journal of Heat and Mass Transfer, 126, 432–447. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.150

Zalzale, M., & McDonald, P. J. (2012). Lattice Boltzmann simulations of the permeability and capillary adsorption of cement model microstructures. Cement and Concrete Research, 42(12), 1601–1610. https://doi.org/10.1016/j.cemconres.2012.09.003

Zhang, M. (2017). Pore-scale modelling of relative permeability of cementitious materials using X-ray computed microtomography images. Cement and Concrete Research, 95, 18–29.

Zheng, J. J., Li, C. Q., & Zhou, X. Z. (2005a). Characterization of microstructure of interfacial transition zone in concrete. ACI Materials Journal, 102(4), 265–271. https://doi.org/10.14359/14620

Zheng, J. J., Li, C. Q., & Zhou, X. Z. (2005b). Thickness of interfacial transition zone and cement content profiles around aggregates. Magazine of Concrete Research, 57(7), 397–406.