Simplified automatic method for measuring the visual field using the perimeter ZERK 1

Springer Science and Business Media LLC - Tập 15 - Trang 1-10 - 2016
Robert Koprowski1, Paweł Kasprowski2, Marek Rzendkowski3
1Department of Biomedical Computer Systems, Faculty of Computer Science and Materials Science, Institute of Computer Science, University of Silesia, Sosnowiec, Poland
2Institute of Informatics, Silesian University of Technology, Gliwice, Poland
3Individual Specialist Medical Practice, Gliwice, Poland

Tóm tắt

Currently available perimeters have limited capabilities of performing measurements of the visual field in children. In addition, they do not allow for fully automatic measurement even in adults. The patient in each case (in any type of perimeter) has at his disposal a button which he uses to indicate that he has seen a light stimulus. Such restrictions have been offset in the presented new perimeter ZERK 1. The paper describes a new type of automated, computerized perimeter designed to test the visual field in children and adults. The new perimeter and proprietary software enable to carry out tests automatically (without the need to press any button). The presented full version of the perimeter has been tested on a head phantom. The next steps will involve clinical trials and a comparison with measurements obtained using other types of perimeters. The perimeter ZERK 1 enables automatic measurement of the visual field in two axes (with a span of 870 mm and a depth of 525 mm) with an accuracy of not less than 1o (95 LEDs on each arm) at a typical position of the patient’s head. The measurement can be carried out in two modes: default/typical (lasting about 1 min), and accurate (lasting about 10 min). Compared with available and known types of perimeters, it has an open canopy, proprietary software and cameras tracking the eye movement, automatic control of fixation points, light stimuli with automatically preset light stimulus intensity in the following ranges: 550–700 mcd (red 620–630 nm), 1100–1400 mcd (green 515–530 nm), 200–400 mcd (blue 465–475 nm). The paper presents a new approach to the construction of perimeters based on automatic tracking of the eye movements in response to stimuli. The unique construction of the perimeter and the software allow for its mobile use in the examination of children and bedridden patients.

Tài liệu tham khảo

Turpin A, Myers JS, McKendrick AM. Development of visual field screening procedures: a case study of the octopus perimeter. Transl Vis Sci Technol. 2016;5(3):3 (eCollection 2016 May). Araie M, Murata H, Iwase A, Hangai M, Sugiyama K, Yoshimura N. Differences in relationship between macular inner retinal layer thickness and retinal sensitivity in eyes with early and progressed glaucoma. Invest Ophthalmol Vis Sci. 2016;57(4):1588–94. doi:10.1167/iovs.15-18131. Brandao LM, Ledolter AA, Schötzau A, Palmowski-Wolfe AM. Comparison of two different OCT Systems: retina layer segmentation and impact on structure-function analysis in glaucoma. J Ophthalmol. 2016;2016:8307639. Kaczorowski K, Mulak M, Szumny D, Misiuk-Hojło M. Heidelberg edge perimeter: the new method of perimetry. Adv Clin Exp Med. 2015;24(6):1105–12. doi:10.17219/acem/43834 (Review). Pearce JG, Maddess T. Retest variability in the Medmont M700 automated perimeter. Optom Vis Sci. 2016;93(3):272–80. doi:10.1097/OPX.0000000000000798. Sun Y, Lin C, Waisbourd M, Ekici F, Erdem E, Wizov SS, Hark LA, Spaeth GL. The impact of visual field clusters on performance-based measures and vision-related quality of life in patients with glaucoma. Am J Ophthalmol. 2016;163:45–52. doi:10.1016/j.ajo.2015.12.006 (Epub 2015 Dec 14). Dabasia PL, Fidalgo BR, Edgar DF, Garway-Heath DF, Lawrenson JG. Diagnostic accuracy of technologies for glaucoma case-finding in a community setting. Ophthalmology. 2015;122(12):2407–15. doi:10.1016/j.ophtha.2015.08.019 (Epub 26 Sep 2015). Ichhpujani P, Lo DC, Cvintal V, Waisbourd M, Averbuch A, Leiby BE, Myers JS, Spaeth GL, Katz LJ. Flicker defined form, standard perimetry and Heidelberg retinal tomography: structure-function relationships. Can J Ophthalmol. 2015;50(4):290–6. doi:10.1016/j.jcjo.2015.05.010. Fredette MJ, Giguère A, Anderson DR, Budenz DL, McSoley J. Comparison of matrix with humphrey field analyzer II with SITA. Optom Vis Sci. 2015;92(5):527–36. Grzybowski A, Sobolewska B. Carl Friedrich Richard Foerster (1825–1902)—the inventor of perimeter and photometer. Acta Ophthalmol. 2015;93(6):586–90. doi:10.1111/aos.12713 (Epub 1 Apr 2015). Takahashi G, Otori Y, Urashima M, Kuwayama Y, Quality of Life Improvement Committee. Evaluation of quality of life in Japanese glaucoma patients and its relationship with visual function. J Glaucoma. 2016;25(3):e150–6. Chen S, McKendrick AM, Turpin A. Choosing two points to add to the 24-2 pattern to better describe macular visual field damage due to glaucoma. Br J Ophthalmol. 2015;99(9):1236–9. Ventura CV, Maia M, Travassos SB, Martins TT, Patriota F, Nunes ME, Agra C, Torres VL, van der Linden V, Ramos RC, Rocha MÂ, Silva PS, Ventura LO, Belfort R Jr. Risk factors associated with the ophthalmoscopic findings identified in infants with presumed zika virus congenital infection. JAMA Ophthalmol. 2016. Zhang L, Sun B, Yu Q, Ji Q, Xie P, Li H, Wang L, Zhou Y, Li Y, Huang C, Liu X. The breed and sex effect on the carcass size performance and meat quality of yak in different muscles. Korean J Food Sci Anim Resour. 2016;36(2):223–9. doi:10.5851/kosfa.2016.36.2.223 (Epub 30 Apr 2016). McLoon LK, Willoughby CL, Anderson JS, Bothun ED, Stager D Jr, Felius J, Lee H, Gottlob I. Abnormally small neuromuscular junctions in the extraocular muscles from subjects with idiopathic nystagmus and nystagmus associated with albinism. Invest Ophthalmol Vis Sci. 2016;57(4):1912–20. Grobbel J, Dietzsch J, Johnson CA, Vonthein R, Stingl K, Weleber RG, Schiefer U. Normal values for the full visual field, corrected for age- and reaction time, using semiautomated kinetic testing on the octopus 900 perimeter. Transl Vis Sci Technol. 2016;5(2):5. Wei S, Wang Y, Wu D, Zu P, Zhang H, Su X. Ultrastructural changes and corneal wound healing after SMILE and PRK procedures. Curr Eye Res. 2016;11:1–10. Rocha AC, Calabrese Kda S, Tedesco RC, Campos WR, Neto MH, Vasconcelos AC, Oréfice F. Morphometric changes in C57BL/6 mice retina infected by toxoplasma gondii ME 49 strain. Exp Parasitol. 2014;136:1–4. Tan PE, Yu PK, Cringle SJ, Morgan WH, Yu DY. Regional heterogeneity of endothelial cells in the porcine vortex vein system. Microvasc Res. 2013;89:70–9. Kong X, Wang K, Sun X, Witt RE. Comparative study of the retinal vessel anatomy of rhesus monkeys and humans. Clin Exp Ophthalmol. 2010;38(6):629–34. Wilhelmus KR, Mitchell BM, Dawson CR, Jones DB, Barron BA, Kaufman HE, Sugar J, Hyndiuk RA, Laibson PR, Stulting RD, Asbell PA. Herpetic eye disease study group. Slitlamp biomicroscopy and photographic image analysis of herpes simplex virus stromal keratitis. Arch Ophthalmol. 2009;127(2):161–6. Iester M, Zanini M, Vittone P, Calabria G. Detection of glaucomatous optic nerve head by using Heidelberg topographic maps. Eye (Lond). 2007;21(5):609–13. Werth R, Seelos K. Restitution of visual functions in cerebrally blind children. Neuropsychologia. 2005;43(14):2011–23. Conrath J, Giorgi R, Raccah D, Ridings B. Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment. Eye (Lond). 2005;19(3):322–6. Bassnett S, Winzenburger PA. Morphometric analysis of fibre cell growth in the developing chicken lens. Exp Eye Res. 2003;76(3):291–302. Edler R, Wertheim D, Greenhill D. Mandibular outline assessment in three groups of orthodontic patients. Eur J Orthod. 2002;24(6):605–14. Iester M, Capris P, Altieri M, Zingirian M, Traverso CE. Correlation between high-pass resolution perimetry and standard threshold perimetry in subjects with glaucoma and ocular hypertension. Int Ophthalmol. 1999;23(2):99–103. Martin LM, Lindblom B, Gedda UK. Concordance between results of optic disc tomography and high-pass resolution perimetry in glaucoma. J Glaucoma. 2000;9(1):28–33. Koprowski R, Wrobel Z. Identification of layers in a OCT image of an eye based on the canny edge detection. Inf Technol Biomed Adv Intell Soft Comput. 2008;47:232–9. Koprowski R, Teper S, Wrobel Z, Wylegala E. Automatic analysis of selected choroidal diseases in OCT images of the eye fundus. Biomed Eng Online. 2013;12:117. Koprowski R, Teper S, Weglarz B, Wylęgała E, Krejca M, Wróbel Z. Fully automatic algorithm for the analysis of vessels in the angiographic image of the eye fundus. Biomed Eng Online. 2012;11:35. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber. 1979;9(1):62–6. Sonka M, Michael Fitzpatrick J. Medical image processing and analysis, handbook of medical imaging. Belligham: SPIE; 2000. Korzynska A, Iwanowski M. Multistage morphological segmentation of bright-field and fluorescent microscopy images. Opt-Electron Rev. 2012;20(2):87–99. Glowacz A, Glowacz A, Glowacz Z. Recognition of thermal images of direct current motor with application of area perimeter vector and Bayes classifier. Meas Sci Rev. 2015;15(3):119–26. Glowacz A, Glowacz A, Glowacz Z. Recognition of monochrome thermal images of synchronous motor with the application of quadtree decomposition and backpropagation neural network. Eksploatacja i niezawodnosc-maintenance and reliability. 2014;16(1):92–6.