Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity

Priya Kalra1, Abhijeet Dhiman1,2, William C. Cho3, John G. Bruno4, Tarun Kumar Sharma5,6
1Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
2Faculty of Pharmacy, Uttarakhand Technical University, Dehradun, India
3Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
4Operational Technologies Corporation, San Antonio, TX, United States
5AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Faridabad, India
6Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abeydeera, 2016, Evoking picomolar binding in RNA by a single phosphorodithioate linkage, Nucleic Acids Res., 44, 8052, 10.1093/nar/gkw725

Ahmad, 2012, Selection is more intelligent than design: improving the affinity of a bivalent ligand through directed evolution, Nucleic Acids Res., 40, 11777, 10.1093/nar/gks899

Albada, 2015, Computational docking simulations of a DNA-aptamer for argininamide and related ligands, J. Comput. Aided Mol. Des., 29, 643, 10.1007/s10822-015-9844-5

Aschenbrenner, 2016, Direct and site-specific quantification of RNA 2′-O-methylation by PCR with an engineered DNA polymerase, Nucleic Acids Res., 44, 3495, 10.1093/nar/gkw200

Berens, 2015, RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression, Biotechnol. J., 10, 246, 10.1002/biot.201300498

Berezovski, 2006, Non-SELEX selection of aptamers, J. Am. Chem. Soc., 128, 1410, 10.1021/ja056943j

Biondi, 2016, Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen, Nucleic Acids Res., 44, 9565, 10.1093/nar/gkw890

Breitsprecher, 2016, Aptamer binding studies using microscale thermophoresis, Methods Mol. Biol., 1380, 99, 10.1007/978-1-4939-3197-2_8

Brody, 2010, High-content affinity-based proteomics: unlocking protein biomarker discovery, Expert Rev. Mol. Diagn., 10, 1013, 10.1586/erm.10.89

Bruno, , Do it yourself 3-dimensional aptamer-ligand molecular modeling, J. Bionanosci., 11, 183, 10.1166/jbns.2017.1437

Bruno, , Effects of various additives on cancer biomarker aptamer-magnetic pull-down in human serum, J. Bionanosci., 11, 45, 10.1166/jbns.2017.1409

Bruno, 2014, Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold, Pathogens, 3, 341, 10.3390/pathogens3020341

Bruno, , Electrophoretic characterization of DNA oligonucleotide-PAMAM dendrimer covalent and noncovalent conjugates, J. Bionanosci., 9, 203, 10.1166/jbns.2015.1292

Bruno, , Predicting the uncertain future of aptamer-based diagnostics and therapeutics, Molecules, 20, 6866, 10.3390/molecules20046866

BrunoJ. G. Automated Aptamer Development May Represent The Last And Best Line Of Defense Against Proverbial “Doomsday” Pathogens2016

Bruno, , Discrimination of recombinant from natural human growth hormone using DNA aptamers, J. Biomol. Tech., 22, 27

Bruno, , DNA aptamer beacon assay for C-telopeptide and handheld fluorometer to monitor bone resorption, J. Fluoresc., 21, 2021, 10.1007/s10895-011-0903-6

Bruno, 2015, Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid listeria detection, J. Fluoresc., 25, 173, 10.1007/s10895-014-1495-8

Bruno, 2014, Preliminary development of a DNA aptamer-magnetic bead capture electrochemiluminescence sandwich assay for brain natriuretic peptide, Microchem. J., 115, 32, 10.1016/j.microc.2014.02.003

Bruno, 2017, Development and selection of specific Listeria monocytogenes p60 aptamers for quantum dot-based lateral flow test strips, J. Bionanosci., 11, 567, 10.1166/jbns.2017.1484

Bubert, 1994, Synthetic peptides derived from the Listeria monocytogenes p60 protein as antigens for the generation of polyclonal antibodies specific for secreted cell-free L. monocytogenes p60 proteins, Appl. Environ. Microbiol., 60, 3120, 10.1128/AEM.60.9.3120-3127.1994

Cao, 2009, Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus, Nucleic Acids Res., 37, 4621, 10.1093/nar/gkp489

Catuogno, 2017, Aptamer cell-based selection: overview and advances, Biomedicines, 5, 49, 10.3390/biomedicines5030049

Catuogno, 2016, Aptamer-mediated targeted delivery of therapeutics: an update, Pharmaceuticals, 9, 69, 10.3390/ph9040069

Chen, 2015, The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation, Proc. Natl. Acad. Sci. U.S.A., 112, 10002, 10.1073/pnas.1502159112

Cheng, 2013, In vivo SELEX for Identification of brain-penetrating aptamers, Mol. Ther. Nucleic Acids, 2, e67, 10.1038/mtna.2012.59

Cheung, 2013, Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer, Proc. Natl. Acad. Sci. U.S.A., 110, 15967, 10.1073/pnas.1309538110

Cho, 2010, Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing, Proc. Natl. Acad. Sci. U.S.A., 107, 15373, 10.1073/pnas.1009331107

Coutu, 2014, Development of a highly specific sandwich ELISA for the detection of Listeria monocytogenes, an important foodborne pathogen, Microbiol Res. Int., 2, 46

Crameri, 1993, 10(20)-fold aptamer library amplification without gel purification, Nucleic Acids Res., 21, 4410, 10.1093/nar/21.18.4410

Cruz-Aguado, 2008, Determination of ochratoxin a with a DNA aptamer, J. Agric. Food Chem., 56, 10456, 10.1021/jf801957h

Davies, 2012, Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets, Proc. Natl. Acad. Sci. U.S.A., 109, 19971, 10.1073/pnas.1213933109

Dhiman, 2017, Aptamer-based point-of-care diagnostic platforms, Sens. Actuat. B, 246, 535, 10.1016/j.snb.2017.02.060

Eaton, 1995, Let's get specific: the relationship between specificity and affinity, Chem. Biol., 2, 633, 10.1016/1074-5521(95)90023-3

Entzian, 2016, Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST), Methods, 97, 27, 10.1016/j.ymeth.2015.08.023

Famulok, 1999, Oligonucleotide aptamers that recognize small molecules, Curr. Opin. Struct. Biol., 9, 324, 10.1016/S0959-440X(99)80043-8

Fujita, 2012, Novel protein detection system using DNA as a constituent material, Fujitsu Sci. Tech. J., 48, 237

Gawande, 2017, Selection of DNA aptamers with two modified bases, Proc. Natl. Acad. Sci. U.S.A., 114, 2898, 10.1073/pnas.1615475114

Gold, 2010, Aptamer-based multiplexed proteomic technology for biomarker discovery, PLoS ONE, 5, e15004, 10.1371/journal.pone.0015004

Gopinath, 2016, Aptamer-based ‘point-of-care testing.’, Biotechnology Advances, 34, 198, 10.1016/j.biotechadv.2016.02.003

Hamula, 2015, The effects of SELEX conditions on the resultant aptamer pools in the selection of aptamers binding to bacterial cells, J. Mol. Evol., 81, 194, 10.1007/s00239-015-9711-y

Hamula, 2016, An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes, Methods, 97, 51, 10.1016/j.ymeth.2015.12.005

Hasegawa, 2016, Methods for improving aptamer binding affinity, Molecules, 21, 421, 10.3390/molecules21040421

He, 2013, Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy, Analyst, 138, 1657, 10.1039/c3an36561a

He, 2012, X-aptamers: a bead-based selection method for random incorporation of druglike moieties onto next-generation aptamers for enhanced binding, Biochemistry, 51, 8321, 10.1021/bi300471d

Heiat, 2016, Computational approach to analyze isolated ssDNA aptamers against angiotensin II, J. Biotechnol., 230, 34, 10.1016/j.jbiotec.2016.05.021

Hernandez, 2009, Aptamers as a model for functional evaluation of LNA and 2′-amino LNA, Bioorg. Med. Chem. Lett., 19, 6585, 10.1016/j.bmcl.2009.10.039

Hernandez, 2012, Graphene and other nanomaterial-based electrochemical aptasensors, Biosensors, 2, 1, 10.3390/bios2010001

Huang, 2003, Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer, RNA, 9, 1456, 10.1261/rna.5990203

Jarosch, 2006, In vitro selection using a dual RNA library that allows primerless selection, Nucleic Acids Res., 34, e86, 10.1093/nar/gkl463

Jauset Rubio, 2016, β-Conglutin dual aptamers binding distinct aptatopes, Anal. Bioanal. Chem., 408, 875, 10.1007/s00216-015-9179-z

Jeong, 2012, Sensitivity and selectivity on aptamer-based assay: the determination of tetracycline residue in bovine milk, Sci. World J., 2012, 159456, 10.1100/2012/159456

Jing, 2011, Methods for measuring aptamer-protein equilibria: a review, Anal. Chim. Acta, 686, 9, 10.1016/j.aca.2010.10.032

Kasahara, 2013, Capillary electrophoresis–systematic evolution of ligands by exponential enrichment selection of base- and sugar-modified DNA aptamers: target binding dominated by 2′- O,4′- C-methylene-bridged/locked nucleic acid primer, Anal. Chem., 85, 4961, 10.1021/ac400058z

Katilius, 2007, Exploring the sequence space of a DNA aptamer using microarrays, Nucleic Acids Res., 35, 7626, 10.1093/nar/gkm922

Kaur, 2012, Probing high affinity sequences of DNA aptamer against VEGF165, PLoS ONE, 7, e31196, 10.1371/journal.pone.0031196

Kendall, 1983, Utilization of the biotin/avidin system to amplify the sensitivity of the enzyme-linked immunosorbent assay (ELISA), J. Immunol. Methods, 56, 329, 10.1016/S0022-1759(83)80022-2

Kim, 2014, Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay, Biochem. Biophys. Res. Commun., 448, 114, 10.1016/j.bbrc.2014.04.086

Kim, 2014, Aptamer cocktails: enhancement of sensing signals compared to single use of aptamers for detection of bacteria, Biosens. Bioelectron., 54, 195, 10.1016/j.bios.2013.11.003

Kimoto, 2016, DNA aptamer generation by genetic alphabet expansion SELEX (ExSELEX) using an unnatural base pair system, Methods Mol. Biol., 1380, 47, 10.1007/978-1-4939-3197-2_4

Kinghorn, 2016, Aptamer affinity maturation by resampling and microarray selection, Anal. Chem., 88, 6981, 10.1021/acs.analchem.6b01635

Knight, 2009, Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape, Nucleic Acids Res., 37, e6, 10.1093/nar/gkn899

Königsbrügge, 2017, A new measure for in vivo thrombin activity in comparison with in vitro thrombin generation potential in patients with hyper- and hypocoagulability, Clin. Exp. Med., 17, 251, 10.1007/s10238-016-0417-2

Kote-Jarai, 2011, Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript, Hum. Genet., 129, 687, 10.1007/s00439-011-0981-1

Lai, 2014, Magnetic-assisted rapid aptamer selection (MARAS) for generating high-affinity DNA aptamer using rotating magnetic fields, ACS Comb. Sci., 16, 321, 10.1021/co5000272

Lam, 2015, 140. Non-SELEX bead-based X-Aptamer selection, Molecular Therapy, 23, S57, 10.1016/S1525-0016(16)33745-5

Larsen, 2016, A general strategy for expanding polymerase function by droplet microfluidics, Nat. Commun., 7, 11235, 10.1038/ncomms11235

Lee, 2010, Bioimaging of nucleolin aptamer-containing 5-(N-benzylcarboxyamide)-2′-deoxyuridine more capable of specific binding to targets in cancer cells, J. Biomed. Biotechnol., 2010, 168306, 10.1155/2010/168306

Li, 2017, Evaluation of aptamer specificity with or without primers using clinical samples for C-reactive protein by magnetic-assisted rapid aptamer selection, RSC Adv., 7, 42856, 10.1039/C7RA07249J

Lipi, 2016, in vitro evolution of chemically-modified nucleic acid aptamers: pros and cons, and comprehensive selection strategies, RNA Biol., 13, 1232, 10.1080/15476286.2016.1236173

Loakes, 2009, Polymerase engineering: towards the encoded synthesis of unnatural biopolymers, Chem. Commun., 31, 4619, 10.1039/b903307f

Lollo, 2014, Beyond antibodies: new affinity reagents to unlock the proteome, Proteomics, 14, 638, 10.1002/pmic.201300187

Lou, 2009, Micromagnetic selection of aptamers in microfluidic channels, Proc. Natl. Acad. Sci. U.S.A., 106, 2989, 10.1073/pnas.0813135106

Macdonald, 2016, Truncation and mutation of a transferrin receptor aptamer enhances binding affinity, Nucleic Acid Ther., 26, 348, 10.1089/nat.2015.0585

Meng, 2016, Selective and sensitive fluorescence aptamer biosensors of adenosine triphosphate, Nanomater. Nanotechnol., 6, 33, 10.5772/63985

Merlini, 1995, Laboratory measurement of thrombin activity–what every clinician scientist needs to know, J. Thromb. Thrombolysis, 2, 85, 10.1007/BF01064374

Mi, 2010, In vivo selection of tumor-targeting RNA motifs, Nat. Chem. Biol., 6, 22, 10.1038/nchembio.277

Müller, 2011, Profiling of active thrombin in human blood by supramolecular complexes, Angew. Chem. Int. Ed. Engl., 50, 6075, 10.1002/anie.201007032

Müller, 2012, Monitoring of plasma levels of activated protein C using a clinically applicable oligonucleotide-based enzyme capture assay, J. Thromb. Haemost., 10, 390, 10.1111/j.1538-7836.2012.04623.x

Nakatsuka, 2017, Differentiating siblings: the case of dopamine and norepinephrine, ACS Chem. Neurosci., 8, 218, 10.1021/acschemneuro.7b00056

Nonaka, 2013, Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system, Anal. Chem., 85, 1132, 10.1021/ac303023d

Oh, 2009, Generation of highly specific aptamers via micromagnetic selection, Anal. Chem., 81, 5490, 10.1021/ac900759k

Ostroff, 2010, Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer, PLoS ONE, 5, e15003, 10.1371/journal.pone.0015003

Pan, 2009, The shorter the better: reducing fixed primer regions of oligonucleotide libraries for aptamer selection, Molecules, 14, 1353, 10.3390/molecules14041353

Pan, 2008, Minimal primer and primer-free SELEX protocols for selection of aptamers from random DNA libraries, BioTechniques, 44, 351, 10.2144/000112689

Penner, 2012, Commercialization of an aptamer-based diagnostic test, IVD Technol., 18, 31

Pfeiffer, 2016, Selection and biosensor application of aptamers for small molecules, Front. Chem., 4, 25, 10.3389/fchem.2016.00025

Pfohl-Leszkowicz, 2007, Ochratoxin a: an overview on toxicity and carcinogenicity in animals and humans, Mol. Nutr. Food Res., 51, 61, 10.1002/mnfr.200600137

Pinheiro, 2014, Towards XNA nanotechnology: new materials from synthetic genetic polymers, Trends Biotechnol., 32, 321, 10.1016/j.tibtech.2014.03.010

Platt, 2009, Analysis of aptamer sequence activity relationships, Integr. Biol., 1, 116, 10.1039/B814892A

Popenda, 2012, Automated 3D structure composition for large RNAs, Nucleic Acids Res., 40, e112, 10.1093/nar/gks339

Porter, 2017, Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors, Nat. Chem. Biol., 13, 295, 10.1038/nchembio.2278

Rhinehardt, 2015, Computational modeling of peptide-aptamer binding, Methods Mol. Biol, 1268, 313, 10.1007/978-1-4939-2285-7_14

Sefah, 2014, In vitro selection with artificial expanded genetic information systems, Proc. Natl. Acad. Sci. U.S.A., 111, 1449, 10.1073/pnas.1311778111

Seo, 2017, Aptamer-based sandwich-type biosensors, J. Biol. Eng., 11, 11, 10.1186/s13036-017-0054-7

Sharma, 2016, The point behind translation of aptamers for Point of Care Diagnostics, Aptamers Synthet. Antibodies, 3, 36

Sharma, 2017, ABCs of DNA aptamer and related assay development, Biotechnol. Adv., 35, 275, 10.1016/j.biotechadv.2017.01.003

Sharma, 2014, Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection, Chem. Commun., 50, 15856, 10.1039/C4CC07275H

Siegmund, 2012, Screening mutant libraries of T7 RNA polymerase for candidates with increased acceptance of 2'-modified nucleotides, Chem. Commun., 48, 9870, 10.1039/c2cc35028a

Souza, 2016, 3D Cell-SELEX: development of RNA aptamers as molecular probes for PC-3 tumor cell line, Exp. Cell Res., 341, 147, 10.1016/j.yexcr.2016.01.015

Stoltenburg, 2015, in vitro selection and interaction studies of a DNA aptamer targeting protein A, PLoS ONE, 10, e0134403, 10.1371/journal.pone.0134403

Sullivan, 2015, An analysis of the association between prostate cancer risk loci, PSA levels, disease aggressiveness and disease-specific mortality, Br. J. Cancer, 113, 166, 10.1038/bjc.2015.199

Tian, 2009, Bivalent ligands with long nanometer-scale flexible linkers, Biochemistry, 48, 264, 10.1021/bi801630b

Tsao, 2017, Generation of aptamers from a primer-free randomized ssDNA library using magnetic-assisted rapid aptamer selection, Sci. Rep., 7, 45478, 10.1038/srep45478

Vater, 2003, Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX, Nucleic Acids Res., 31, e130, 10.1093/nar/gng130

Vorobyeva, 2016, Multivalent aptamers: versatile tools for diagnostic and therapeutic applications, Molecules, 21, 1613, 10.3390/molecules21121613

Wang, 2016, A synthetic molecular system capable of mirror-image genetic replication and transcription, Nat. Chem., 8, 698, 10.1038/nchem.2517

Webber, 2014, Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscanTM) platform, Mol. Cell. Proteomics, 13, 1050, 10.1074/mcp.M113.032136

Weerathunge, 2014, Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing, Anal. Chem., 86, 11937, 10.1021/ac5028726

Wilson, 2013, Sensitivity and specificity: twin goals of proteomics assays. Can they be combined?, Expert. Rev. Proteomics, 10, 135, 10.1586/epr.13.7

Wu, 2018, Disruption of liver development and coagulation pathway by ochratoxin A in embryonic zebrafish, Toxicol. Appl. Pharmacol., 340, 1, 10.1016/j.taap.2017.12.012

Xu, 2009, Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis, Anal. Chem., 81, 669, 10.1021/ac8020592

Yang, 1996, Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy, Science, 272, 1343, 10.1126/science.272.5266.1343

Yang, 2011, Amplification, mutation, and sequencing of a six-letter synthetic genetic system, J. Am. Chem. Soc., 133, 15105, 10.1021/ja204910n

Yoon, 2015, Isolation of foreign material-free endothelial progenitor cells using CD31 aptamer and therapeutic application for ischemic injury, PLoS ONE, 10, e0131785, 10.1371/journal.pone.0131785

Zandarashvili, 2015, Balancing between affinity and speed in target DNA search by zinc-finger proteins via modulation of dynamic conformational ensemble, Proc. Natl. Acad. Sci. U.S.A., 112, E5142, 10.1073/pnas.1507726112

Zhang, 2015, A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery, Sci. Rep., 5, 10099, 10.1038/srep10099

Zhao, 2011, Aptamer capturing of enzymes on magnetic beads to enhance assay specificity and sensitivity, Anal. Chem., 83, 9234, 10.1021/ac203063z

Zhong, 2011, Bayesian methods to detect dye-labelled DNA oligonucleotides in multiplexed Raman spectra: bayesian methods to detect dye-labelled oligonucleotides, J. R. Statist. Soc., 60, 187, 10.1111/j.1467-9876.2010.00744.x

Zhou, 2017, Aptamers as targeted therapeutics: current potential and challenges, Nat. Rev. Drug Discov., 16, 181, 10.1038/nrd.2016.199

Zhou, 2014, Aptamer-based biosensors for biomedical diagnostics, Analyst, 139, 2627, 10.1039/c4an00132j

Zimmermann, 2010, Monitoring genomic sequences during SELEX using high-throughput sequencing: neutral SELEX, PLoS ONE, 5, e9169, 10.1371/journal.pone.0009169