Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval)
Tóm tắt
Cytochrome P450 monooxygenases (P450s) are involved in metabolic resistance to insecticides and require NADPH cytochrome P450 reductase (CPR) to transfer electrons when they catalyze oxidation reactions. The carmine spider mite,
Từ khóa
Tài liệu tham khảo
Guo, F., Zhang, Z. & Zhao, Z. Pesticide resistance of Tetranychus cinnabarinus (Acari: Tetranychidae) in China: a review. Syst. Appl. Acarol. 3, 3–7 (1998).
Cakmak, I., BAŞPINAR, H. & Madanlar, N. Control of the carmine spider mite Tetranychus cinnabarinus Boisduval by the predatory mite Phytoseiulus persimilis (Athias-Henriot) in protected strawberries in Aydın. Turk. J. Agric. For. 29, 259–265 (2005).
de Mendonça, R. S., Navia, D., Diniz, I. R., Auger, P. & Navajas, M. A critical review on some closely related species of Tetranychus sensu stricto (Acari: Tetranychidae) in the public DNA sequences databases. Exp. Appl. Acarol. 55, 1–23 (2011).
Auger, P. P., Migeon, A. A., Ueckermann, E. A., Tiedt, L. L. & Navarro, M. M. N. Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, Prostigmata, Tetranychidae): Review and new data. Acarologia 53, 383–415 (2013).
Van Leeuwen, T., Van Pottelberge, S. & Tirry, L. Biochemical analysis of a chlorfenapyr‐selected resistant strain of Tetranychus urticae Koch. Pest Manag. Sci. 62, 425–433 (2006).
Nayak, M. K. & Daglish, G. J. Combined treatments of spinosad and chlorpyrifos‐methyl for management of resistant psocid pests (Psocoptera: Liposcelididae) of stored grain. Pest Manag. Sci. 63, 104–109 (2007).
Demaeght, P. et al. Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. Insect Biochem. Mol. Biol. 43, 544–554 (2013).
Riga, M. et al. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochem. Mol. Biol. 46, 43–53 (2014).
Yang, Y., Chen, S., Wu, S., Yue, L. & Wu, Y. Constitutive overexpression of multiple cytochrome P450 genes associated with pyrethroid resistance in Helicoverpa armigera. J. Econ. Entomol. 99, 1784–1789 (2006).
Paine, M. J. et al. in Cytochrome P450 115–148 (Springer, 2005).
De Montellano, P. R. O. Cytochrome P450: structure, mechanism and biochemistry (Springer, 2005).
Lu, A. Y., Junk, K. W. & Coon, M. J. Resolution of the cytochrome P-450-containing ω-hydroxylation system of liver microsomes into three components. J. Biol Chem. 244, 3714–3721 (1969).
Nishino, H. & Ishibashi, T. Evidence for requirement of NADPH-cytochrome P450 oxidoreductase in the microsomal NADPH-sterol Δ7-reductase system. Arch. Biochem. Biophys. 374, 293–298 (2000).
Wang, J. & de Montellano, P. R. O. The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase. J. Biol Chem. 278, 20069–20076 (2003).
Henderson, C. J. et al. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol Chem. 278, 13480–13486 (2003).
Baum, J. A. et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322–1326 (2007).
Mao, Y.-B. et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25, 1307–1313 (2007).
Zhu, F. et al. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PloS one 7, e31037 (2012).
Lycett, G. et al. Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Mol Biol. 15, 321–327 (2006).
Horike, N., Takemori, H., Nonaka, Y., Sonobe, H. & Okamoto, M. Molecular cloning of NADPH‐cytochrome P450 oxidoreductase from silkworm eggs. Eur. J. Biochem. 267, 6914–6920 (2000).
Shen, A. L., Sem, D. S. & Kasper, C. B. Mechanistic studies on the reductive half-reaction of NADPH-cytochrome P450 oxidoreductase. J. Biol Chem. 274, 5391–5398 (1999).
Hubbard, P. A., Shen, A. L., Paschke, R., Kasper, C. B. & Kim, J.-J. P. NADPH-cytochrome P450 oxidoreductase structural basis for hydride and electron transfer. J. Biol Chem. 276, 29163–29170 (2001).
Soderlund, D. & Knipple, D. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol. 33, 563–577 (2003).
Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).
Miyazaki, M., Ohyama, K., Dunlap, D. Y. & Matsumura, F. Cloning and sequencing of thepara-type sodium channel gene from susceptible andkdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol. Gen. Genet. 252, 61–68 (1996).
Tsagkarakou, A. et al. Identification of pyrethroid resistance associated mutations in the para sodium channel of the two‐spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Insect Mol Biol. 18, 583–593 (2009).
Ya‐ning, F. et al. The sodium channel gene in Tetranychus cinnabarinus (Boisduval): identification and expression analysis of a mutation associated with pyrethroid resistance. Pest Manag. Sci. 67, 904–912 (2011).
Jamroz, R., Guerrero, F., Pruett, J., Oehler, D. & Miller, R. Molecular and biochemical survey of acaricide resistance mechanisms in larvae from Mexican strains of the southern cattle tick, Boophilus microplus. J. Insect Physiol. 46, 685–695 (2000).
Scott, J. G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 29, 757–777 (1999).
Shen, G.-M., Shi, L., Xu, Z.-F. & He, L. Inducible Expression of Mu-Class Glutathione S-Transferases Is Associated with Fenpropathrin Resistance in Tetranychus cinnabarinus. Int. J. Mol. Sci. 15, 22626–22641 (2014).
Lin, H. et al. Resistance selection and biochemical mechanism of resistance to two Acaricides in Tetranychus cinnabarinus (Boiduval). Pestic. Biochem. Physiol. 93, 47–52 (2009).
Van Den Brink, H. J., Van Nistelrooy, H. J., De Waard, M. A. & Van Gorcom, R. F. Increased resistance to 14α-demethylase inhibitors (DMIs) in Aspergillus niger by coexpression of the Penicillium italicum eburicol 14α-demethylase (cyp51) and the A. niger cytochrome P450 reductase (cprA) genes. J. Biotechnol. 49, 13–18 (1996).
Pandey, A. V., Kempna, P., Hofer, G., Mullis, P. E. & Flück, C. E. Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase. Mol. Endocrinol. 21, 2579–2595 (2007).
Lian, L.-Y., Widdowson, P., McLaughlin, L. A. & Paine, M. J. Biochemical comparison of Anopheles gambiae and human NADPH P450 reductases reveals different 2′-5′-ADP and FMN binding traits. PloS one 6, e20574 (2011).
Wang, M. et al. Three-dimensional structure of NADPH–cytochrome P450 reductase: prototype for FMN-and FAD-containing enzymes. P. Natl. Acad. Sci. 94, 8411–8416 (1997).
Lamb, D. C. et al. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases. Structure 14, 51–61 (2006).
Feyereisen, R. Insect CYP genes and P450 enzymes in Insect molecular biology and biochemistry (ed. Gilbert L. I. ) Ch. 8, 236–316 (Elsevier, 2012).
Shi, L. et al. Expression characteristics of two novel cytochrome P450 genes involved in fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). Pestic. Biochem. Physiol. 119, 33–41 (2015).
Van Pottelberge, S., Khajehali, J., Van Leeuwen, T. & Tirry, L. Effects of spirodiclofen on reproduction in a susceptible and resistant strain of Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 47, 301–309 (2009).
Zhao, C., Tang, T., Feng, X. & Qiu, L. Cloning and characterisation of NADPH‐dependent cytochrome P450 reductase gene in the cotton bollworm, Helicoverpa armigera. Pest Manag. Sci. 70, 130–139 (2014).
Shephard, E. A., Phillips, I. R., Bayney, R. M., Pike, S. F. & Rabin, B. R. Quantification of NADPH: cytochrome P-450 reductase in liver microsomes by a specific radioimmunoassay technique. Biochem. J 211, 333–340 (1983).
Xu, Z. et al. Analysis of insecticide resistance-related genes of the carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome. PloS one 9, e94779 (2014).
Bansal, R. et al. Hessian fly-associated bacteria: transmission, essentiality and composition. PloS one 6, e23170 (2011).
Bairoch, A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res. 21, 3097 (1993).
Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).
Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).
Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).
Rozen, S. & Skaletsky, H. in Bioinformatics methods and protocols 365–386 (Springer, 1999).
Sun, W., Jin, Y., He, L., Lu, W.-C. & Li, M. Suitable reference gene selection for different strains and developmental stages of the carmine spider mite, Tetranychus cinnabarinus, using quantitative real-time PCR. J. Insect Sci. 10, 208 (2010).
Van Leeuwen, T., Van Pottelberge, S., Nauen, R. & Tirry, L. Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Manag. Sci. 63, 1172–1177 (2007).
Van Leeuwen, T., Van Pottelberge, S. & Tirry, L. Comparative acaricide susceptibility and detoxifying enzyme activities in field‐collected resistant and susceptible strains of Tetranychus urticae. Pest Manag. Sci. 61, 499–507 (2005).
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. methods 25, 402–408 (2001).
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Shang, C.-C. & Soderlund, D. M. Monooxygenase activity of tobacco budworm (Heliothis virescens F.) larvae: tissue distribution and optimal assay conditions for the gut activity. Comp. Biochem. Phys. B 79, 407–411 (1984).