Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet β cells

Experimental and Molecular Medicine - Tập 45 Số 8 - Trang e37-e37 - 2013
Michael A. Kalwat1, Debbie C. Thurmond2
1Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA
2Department of Pediatrics, Herman B Wells Center for Pediatric Research, Basic Diabetes Group, Indiana University School of Medicine, Indianapolis, IN, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ashcroft FM, Harrison DE, Ashcroft SJ . Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 1984; 312: 446–448.

Cook DL, Hales CN . Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 1984; 311: 271–273.

Rorsman P, Ashcroft FM, Trube G . Single Ca channel currents in mouse pancreatic B-cells. Pflugers Arch 1988; 412: 597–603.

Satin LS, Cook DL . Voltage-gated Ca2+ current in pancreatic B-cells. Pflugers Arch 1985; 404: 385–387.

Grodsky GM . Kinetics of insulin secretion: underlying metabolic events. In: LeRoith D, Taylor S, Olefsky J (eds). Diabetes Mellitus: a fundamental and clinical text. Lippincott Williams & Wilkins: Philadelphia, PA, 2000.

Daniel S, Noda M, Straub SG, Sharp GW, Komatsu M, Schermerhorn T et al. Identification of the docked granule pool responsible for the first phase of glucose-stimulated insulin secretion. Diabetes 1999; 48: 1686–1690.

Rorsman P, Eliasson L, Renstrom E, Gromada J, Barg S, Gopel S . The cell physiology of biphasic insulin secretion. News Physiol Sci 2000; 15: 72–77.

Rorsman P, Braun M . Regulation of insulin secretion in human pancreatic islets. Ann Rev Physiol 2013; 75: 155–179.

Thurmond DC, Gonelle-Gispert C, Furukawa M, Halban PA, Pessin JE . Glucose-stimulated insulin secretion is coupled to the interaction of actin with the t-SNARE (target membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein) complex. Mol Endocrinol 2003; 17: 732–742.

Mourad NI, Nenquin M, Henquin JC . Metabolic amplifying pathway increases both phases of insulin secretion independently of beta-cell actin microfilaments. Am J Physiol Cell Physiol 2010; 299: C389–C398.

Wang Z, Thurmond DC . Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 2009; 122: 893–903.

Rondas D, Tomas A, Soto-Ribeiro M, Wehrle-Haller B, Halban PA . Novel mechanistic link between focal adhesion remodeling and glucose-stimulated insulin secretion. J Biol Chem 2012; 287: 2423–2436.

Cai EP, Casimir M, Schroer SA, Luk CT, Shi SY, Choi D et al. In Vivo Role of focal adhesion kinase in regulating pancreatic beta-cell mass and function through insulin signaling, actin dynamics, and granule trafficking. Diabetes 2012; 61: 1708–1718.

Rondas D, Tomas A, Halban PA . Focal adhesion remodeling is crucial for glucose-stimulated insulin secretion and involves activation of focal adhesion kinase and paxillin. Diabetes 2011; 60: 1146–1157.

Nesher R, Cerasi E . Modeling phasic insulin release: immediate and time-dependent effects of glucose. Diabetes 2002; 51: S53–S59.

Gerich JE . Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes 2002; 51: S117–S121.

Spurlin BA, Thurmond DC . Syntaxin 4 facilitates biphasic glucose-stimulated insulin secretion from pancreatic {beta}-cells. Mol Endocrinol 2006; 20: 183–193.

Gomi H, Mizutani S, Kasai K, Itohara S, Izumi T . Granuphilin molecularly docks insulin granules to the fusion machinery. J Cell Biol 2005; 171: 99–109.

Bhatnagar S, Oler AT, Rabaglia ME, Stapleton DS, Schueler KL, Truchan NA et al. Positional cloning of a type 2 diabetes quantitative trait locus; tomosyn-2, a negative regulator of insulin secretion. PLoS Genet 2011; 7: e1002323.

Lopez JA, Kwan EP, Xie L, He Y, James DE, Gaisano HY . The RalA GTPase is a central regulator of insulin exocytosis from pancreatic islet beta cells. J Biol Chem 2008; 283: 17939–17945.

Kasai K, Ohara-Imaizumi M, Takahashi N, Mizutani S, Zhao S, Kikuta T et al. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Invest 2005; 115: 388–396.

Yaekura K, Julyan R, Wicksteed BL, Hays LB, Alarcon C, Sommers S et al. Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem 2003; 278: 9715–9721.

Ohara-Imaizumi M, Fujiwara T, Nakamichi Y, Okamura T, Akimoto Y, Kawai J et al. Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 2007; 177: 695–705.

Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 2012; 55: 2682–2692.

Wang Z, Oh E, Thurmond DC . Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion. J Biol Chem 2007; 282: 9536–9546.

Wang Z, Thurmond DC . Differential phosphorylation of RhoGDI mediates the distinct cycling of Cdc42 and Rac1 to regulate second-phase insulin secretion. J Biol Chem 2010; 285: 6186–6197.

Wang Z, Oh E, Clapp DW, Chernoff J, Thurmond DC . Inhibition or ablation of p21-activated kinase (PAK1) disrupts glucose homeostatic mechanisms in vivo. J Biol Chem 2011; 286: 41359–41367.

Oh E, Thurmond DC . Munc18c depletion selectively impairs the sustained phase of insulin release. Diabetes 2009; 58: 1165–1174.

Orci L, Gabbay KH, Malaisse WJ . Pancreatic beta-cell web: its possible role in insulin secretion. Science 1972; 175: 1128–1130.

Aunis D, Bader MF . The cytoskeleton as a barrier to exocytosis in secretory cells. J Exp Biol 1988; 139: 253–266.

Stutchfield J, Howell SL . The effect of phalloidin on insulin secretion from islets of Langerhans isolated from rat pancreas. FEBS Lett 1984; 175: 393–396.

van Obberghen E, Somers G, Devis G, Vaughan GD, Malaisse-Lagae F, Orci L et al. Dynamics of insulin release and microtubular-microfilamentous system. I. Effect of cytochalasin B. J Clin Invest 1973; 52: 1041–1051.

Li G, Rungger-Brandle E, Just I, Jonas JC, Aktories K, Wollheim CB . Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets. Mol Biol Cell 1994; 5: 1199–1213.

Nevins AK, Thurmond DC . Glucose regulates the cortical actin network through modulation of Cdc42 cycling to stimulate insulin secretion. Am J Physiol Cell Physiol 2003; 285: C698–C710.

Jerdeva GV, Wu K, Yarber FA, Rhodes CJ, Kalman D, Schechter JE et al. Actin and non-muscle myosin II facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells. J Cell Sci 2005; 118: 4797–4812.

Lim GE, Xu M, Sun J, Jin T, Brubaker PL . The Rho Guanosine 5'-triphosphatase, cell division cycle 42, is required for insulin-induced actin remodeling and glucagon-like peptide-1 secretion in the intestinal endocrine L cell. Endocrinology 2009; 150: 580–591.

Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF . Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 2004; 15: 520–531.

Gil A, Rueda J, Viniegra S, Gutierrez LM . The F-actin cytoskeleton modulates slow secretory components rather than readily releasable vesicle pools in bovine chromaffin cells. Neuroscience 2000; 98: 605–614.

Chowdhury HH, Popoff MR, Zorec R . Actin cytoskeleton depolymerization with clostridium spiroforme toxin enhances the secretory activity of rat melanotrophs. J Physiol 1999; 521 (Pt 2): 389–395.

Carbajal ME, Vitale ML . The cortical actin cytoskeleton of lactotropes as an intracellular target for the control of prolactin secretion. Endocrinology 1997; 138: 5374–5384.

Pendleton A, Koffer A . Effects of latrunculin reveal requirements for the actin cytoskeleton during secretion from mast cells. Cell Motil Cytoskeleton 2001; 48: 37–51.

Johnson JL, Monfregola J, Napolitano G, Kiosses WB, Catz SD . Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase-activating protein Gem-interacting protein. Mol Biol Cell 2012; 23: 1902–1916.

Azuma T, Witke W, Stossel TP, Hartwig JH, Kwiatkowski DJ . Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J 1998; 17: 1362–1370.

Woronowicz K, Dilks JR, Rozenvayn N, Dowal L, Blair PS, Peters CG et al. The platelet actin cytoskeleton associates with SNAREs and participates in alpha-granule secretion. Biochemistry 2010; 49: 4533–4542.

Wang F, Wang Y, Kim MS, Puthanveetil P, Ghosh S, Luciani DS et al. Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization. Cardiovasc Res 2010; 87: 127–136.

Dillon C, Goda Y . The actin cytoskeleton: integrating form and function at the synapse. Ann Rev Neurosci 2005; 28: 25–55.

Omata W, Shibata H, Li L, Takata K, Kojima I . Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem J 2000; 346: 321–328.

Brozinick JT Jr, Hawkins ED, Strawbridge AB, Elmendorf JS . Disruption of cortical actin in skeletal muscle demonstrates an essential role of the cytoskeleton in glucose transporter 4 translocation in insulin-sensitive tissues. J Biol Chem 2004; 279: 40699–40706.

Aunis D, Guerold B, Bader MF, Cieselski-Treska J . Immunocytochemical and biochemical demonstration of contractile proteins in chromaffin cells in culture. Neuroscience 1980; 5: 2261–2277.

Burgoyne RD, Cheek TR, Norman KM . Identification of a secretory granule-binding protein as caldesmon. Nature 1986; 319: 68–70.

Vitale ML, Rodriguez Del Castillo A, Tchakarov L, Trifaro JM . Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon not exhibited by gelsolin. J Cell Biol 1991; 113: 1057–1067.

Perrin D, Aunis D . Reorganization of alpha-fodrin induced by stimulation in secretory cells. Nature 1985; 315: 589–592.

Somers G, Blondel B, Orci L, Malaisse WJ . Motile events in pancreatic endocrine cells. Endocrinology 1979; 104: 255–264.

Wilson JR, Ludowyke RI, Biden TJ . A redistribution of actin and myosin IIA accompanies Ca(2+)-dependent insulin secretion. FEBS Lett 2001; 492: 101–106.

Wang JL, Easom RA, Hughes JH, McDaniel ML . Evidence for a role of microfilaments in insulin release from purified beta-cells. Biochem Biophys Res Commun 1990; 171: 424–430.

Swanston-Flatt SK, Carlsson L, Gylfe E . Actin filament formation in pancreatic beta-cells during glucose stimulation of insulin secretion. FEBS Lett 1980; 117: 299–302.

Howell SL, Tyhurst M . Regulation of actin polymerizaton in rat islets of Langerhans. Biochem J 1980; 192: 381–383.

Varadi A, Tsuboi T, Rutter GA . Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 2005; 16: 2670–2680.

Jewell JL, Luo W, Oh E, Wang Z, Thurmond DC . Filamentous actin regulates insulin exocytosis through direct interaction with Syntaxin 4. J Biol Chem 2008; 283: 10716–10726.

Schubert S, Knoch KP, Ouwendijk J, Mohammed S, Bodrov Y, Jager M et al. beta2-Syntrophin is a Cdk5 substrate that restrains the motility of insulin secretory granules. PloS One 2010; 5: e12929.

Snabes MC, Boyd AE . Increased filamentous actin in islets of Langerhans from fasted hamsters. Biochem Biophys Res Commun 1982; 104: 207–211.

Konstantinova I, Nikolova G, Ohara-Imaizumi M, Meda P, Kucera T, Zarbalis K et al. EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell 2007; 129: 359–370.

Corkey BE . Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes 2012; 61: 4–13.

Kepner EM, Yoder SM, Oh E, Kalwat MA, Wang Z, Quilliam LA et al. Cool-1/betaPIX functions as a guanine nucleotide exchange factor in the cycling of Cdc42 to regulate insulin secretion. Am J Physiol Endocrinol Metab 2011; 301: E1072–E1080.

Nevins AK, Thurmond DC . Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. J Biol Chem 2006; 281: 18961–18972.

Kalwat MA, Wiseman DA, Luo W, Wang Z, Thurmond DC . Gelsolin associates with the N-terminus of Syntaxin 4 to regulate insulin granule exocytosis. Mol Endocrinol 2012; 26: 128–141.

Bishop AL, Hall A . Rho GTPases and their effector proteins. Biochem J 2000; 348: 241–255.

Wennerberg K, Rossman KL, Der CJ . The Ras superfamily at a glance. J Cell Sci 2005; 118: 843–846.

DerMardirossian C, Bokoch GM . GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 2005; 15: 356–363.

Jayaram B, Syed I, Kyathanahalli CN, Rhodes CJ, Kowluru A . Arf nucleotide binding site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 beta-cells and rat islets. Biochem Pharmacol 2011; 81: 1016–1027.

Brozzi F, Diraison F, Lajus S, Rajatileka S, Philips T, Regazzi R et al. Molecular mechanism of myosin Va recruitment to dense core secretory granules. Traffic 2012; 13: 54–69.

Wang H, Ishizaki R, Kobayashi E, Fujiwara T, Akagawa K, Izumi T . Loss of granuphilin and loss of syntaxin-1A cause differential effects on insulin granule docking and fusion. J Biol Chem 2011; 286: 32244–32250.

Merrins MJ, Stuenkel EL . Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells. J Physiol 2008; 586: 5367–5381.

Izumi T . Physiological roles of Rab27 effectors in regulated exocytosis. Endocr J. 2007; 54: 649–657.

Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 2007; 104: 19333–19338.

Kowluru A, Li G, Rabaglia ME, Segu VB, Hofmann F, Aktories K et al. Evidence for differential roles of the Rho subfamily of GTP-binding proteins in glucose- and calcium-induced insulin secretion from pancreatic beta cells. Biochem Pharmacol 1997; 54: 1097–1108.

Hammar E, Tomas A, Bosco D, Halban PA . Role of the Rho-ROCK (Rho-associated kinase) signaling pathway in the regulation of pancreatic beta-cell function. Endocrinology 2009; 150: 2072–2079.

Li J, Luo R, Kowluru A, Li G . Novel regulation by Rac1 of glucose- and forskolin-induced insulin secretion in INS-1 beta-cells. Am J Physiol Endocrinol Metab 2004; 286: E818–E827.

Asahara S, Shibutani Y, Teruyama K, Inoue HY, Kawada Y, Etoh H et al. Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin. Diabetologia 2013; 56: 1088–1097.

Kesavan G, Sand FW, Greiner TU, Johansson JK, Kobberup S, Wu X et al. Cdc42-mediated tubulogenesis controls cell specification. Cell 2009; 139: 791–801.

Kalwat MA, Yoder SM, Wang Z, Thurmond DC. A . p21-activated kinase (PAK1) signaling cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic beta cells. Biochem Pharmacol 2013; 85: 808–816.

Kowluru A . Friendly, and not so friendly, roles of Rac1 in islet beta-cell function: lessons learnt from pharmacological and molecular biological approaches. Biochem Pharmacol 2011; 81: 965–975.

Kowluru A, Veluthakal R . Rho guanosine diphosphate-dissociation inhibitor plays a negative modulatory role in glucose-stimulated insulin secretion. Diabetes 2005; 54: 3523–3529.

Hansen CG, Nichols BJ . Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 2010; 20: 177–186.

Thomas CM, Smart EJ . Caveolae structure and function. J Cell Mol Med 2008; 12: 796–809.

Ishikawa Y, Otsu K, Oshikawa J . Caveolin; different roles for insulin signal? Cell Signal 2005; 17: 1175–1182.

Cheng ZJ, Singh RD, Holicky EL, Wheatley CL, Marks DL, Pagano RE . Co-regulation of caveolar and Cdc42-dependent fluid phase endocytosis by phosphocaveolin-1. J Biol Chem 2010; 285: 15119–15125.

Baltierrez-Hoyos R, Roa-Espitia AL, Hernandez-Gonzalez EO . The association between CDC42 and caveolin-1 is involved in the regulation of capacitation and acrosome reaction of guinea pig and mouse sperm. Reproduction 2012; 144: 123–134.

Nevins AK, Thurmond DC . A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem 2005; 280: 1944–1952.

Bokoch GM . Biology of the P21-Activated Kinases. Ann Rev Biochem 2003; 72: 743–781.

Finkielstein CV, Overduin M, Capelluto DG . Cell migration and signaling specificity is determined by the phosphatidylserine recognition motif of Rac1. J Biol Chem 2006; 281: 27317–27326.

Diebold BA, Fowler B, Lu J, Dinauer MC, Bokoch GM . Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. J Biol Chem 2004; 279: 28136–28142.

Nie J, Sun C, Faruque O, Ye G, Li J, Liang Q et al. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic beta-cells. J Biol Chem 2012; 287: 26435–26444.

Nie J, Lilley BN, Pan YA, Faruque O, Liu X, Zhang W et al. SAD-A potentiates glucose-stimulated insulin secretion as a mediator of glucagon-like peptide 1 response in pancreatic beta cells. Mol Cell Bio 2013; 33: 2527–2534.

Chen XY, Gu XT, Saiyin H, Wan B, Zhang YJ, Li J et al. Brain selective kinase 2 (BRSK2) phosphorylation on PCTAIRE1 negatively regulates glucose-stimulated insulin secretion in pancreatic beta-cells. J Biol Chem 2012; 287: 30368–30375.

Longuet C, Broca C, Costes S, Hani EH, Bataille D, Dalle S . Extracellularly regulated kinases 1/2 (p44/42 mitogen-activated protein kinases) phosphorylate synapsin I and regulate insulin secretion in the MIN6 beta-cell line and islets of Langerhans. Endocrinology 2005; 146: 643–654.

Trumper J, Ross D, Jahr H, Brendel MD, Goke R, Horsch D . The Rap-B-Raf signalling pathway is activated by glucose and glucagon-like peptide-1 in human islet cells. Diabetologia 2005; 48: 1534–1540.

Edwards DC, Sanders LC, Bokoch GM, Gill GN . Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1999; 1: 253–259.

Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP et al. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 2002; 4: 681–690.

Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P . Inhibition of myosin light chain kinase by p21-activated kinase. Science 1999; 283: 2083–2085.

DerMardirossian C, Schnelzer A, Bokoch GM . Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 2004; 15: 117–127.

Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R . p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO R 2004; 5: 154–160.

Arous C, Rondas D, Halban PA . Non-muscle myosin IIA is involved in focal adhesion and actin remodelling controlling glucose-stimulated insulin secretion. Diabetologia 2013; 56: 792–802.

Kowluru A . Small G proteins in islet beta-cell function. Endocr Rev 2010; 31: 52–78.

Kowluru A, Veluthakal R, Rhodes CJ, Kamath V, Syed I, Koch BJ . Protein farnesylation-dependent Raf/extracellular signal-related kinase signaling links to cytoskeletal remodeling to facilitate glucose-induced insulin secretion in pancreatic beta-cells. Diabetes 2010; 59: 967–977.

Tomas A, Yermen B, Min L, Pessin JE, Halban PA . Regulation of pancreatic beta-cell insulin secretion by actin cytoskeleton remodelling: role of gelsolin and cooperation with the MAPK signalling pathway. J Cell Sci 2006; 119: 2156–2167.

Casimir M, Dai XQ, Hajmrle C, Kolic J, Guo D, Oudit G et al. Gelsolin knockout impairs insulin secretion independently of actin polymerization. Diabetes 2011; 60: A351.

Hong L, Kenney SR, Phillips GK, Simpson D, Schroeder CE, Noth J et al. Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. J Biol Chem 2013; 288: 8531–8543.

de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998; 396: 474–477.

Mizuno K, Ramalho JS, Izumi T . Exophilin8 transiently clusters insulin granules at the actin-rich cell cortex prior to exocytosis. Mol Biol Cell 2011; 22: 1716–1726.

Waselle L, Coppola T, Fukuda M, Iezzi M, El-Amraoui A, Petit C et al. Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis. Mol Biol Cell 2003; 14: 4103–4113.

Khoo S, Cobb MH . Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proc Natl Acad Sci USA 1997; 94: 5599–5604.

Frodin M, Sekine N, Roche E, Filloux C, Prentki M, Wollheim CB et al. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem 1995; 270: 7882–7889.

Bowe JE, Chander A, Liu B, Persaud SJ, Jones PM . The permissive effects of glucose on receptor-operated potentiation of insulin secretion from mouse islets: a role for ERK1/2 activation and cytoskeletal remodelling. Diabetologia 2013; 56: 783–791.

Duan L, Cobb MH . Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback. Proc Natl Acad Sci USA 2010; 107: 22314–22319.

Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153–183.

Wendt A, Speidel D, Danielsson A, Esguerra JL, Bogen IL, Walaas SI et al. Synapsins I and II are not required for insulin secretion from mouse pancreatic beta-cells. Endocrinology 2012; 153: 2112–2119.

Iida Y, Senda T, Matsukawa Y, Onoda K, Miyazaki JI, Sakaguchi H et al. Myosin light-chain phosphorylation controls insulin secretion at a proximal step in the secretory cascade. Am J Physiol 1997; 273: E782–E789.

Hunger-Glaser I, Salazar EP, Sinnett-Smith J, Bombesin Rozengurt E . lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910: requirement for ERK activation. J Biol Chem 2003; 278: 22631–22643.

Dobkin-Bekman M, Naidich M, Rahamim L, Przedecki F, Almog T, Lim S et al. A preformed signaling complex mediates GnRH-activated ERK phosphorylation of paxillin and FAK at focal adhesions in L beta T2 gonadotrope cells. Mol Endocrinol 2009; 23: 1850–1864.

Zheng Y, Xia Y, Hawke D, Halle M, Tremblay ML, Gao X et al. FAK phosphorylation by ERK primes ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol Cell 2009; 35: 11–25.

Yu W, Niwa T, Fukasawa T, Hidaka H, Senda T, Sasaki Y et al. Synergism of protein kinase A, protein kinase C, and myosin light-chain kinase in the secretory cascade of the pancreatic beta-cell. Diabetes 2000; 49: 945–952.

Yin HL, Stossel TP . Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 1979; 281: 583–586.

Kwiatkowski DJ . Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol. 1999; 11: 103–108.

Yin HL, Kwiatkowski DJ, Mole JE, Cole FS . Structure and biosynthesis of cytoplasmic and secreted variants of gelsolin. J Biol Chem 1984; 259: 5271–5276.

Kwiatkowski DJ, Stossel TP, Orkin SH, Mole JE, Colten HR, Yin HL . Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature 1986; 323: 455–458.

Bader MF, Trifaro JM, Langley OK, Thierse D, Aunis D . Secretory cell actin-binding proteins: identification of a gelsolin-like protein in chromaffin cells. J Cell Biol 1986; 102: 636–646.

Lueck A, Brown D, Kwiatkowski DJ . The actin-binding proteins adseverin and gelsolin are both highly expressed but differentially localized in kidney and intestine. J Cell Sci 1998; 111 (Pt 24): 3633–3643.

Tchakarov L, Vitale ML, Jeyapragasan M, Rodriguez Del Castillo A, Trifaro JM . Expression of scinderin, an actin filament-severing protein, in different tissues. FEBS Lett 1990; 268: 209–212.

Lueck A, Yin HL, Kwiatkowski DJ, Allen PG . Calcium regulation of gelsolin and adseverin: a natural test of the helix latch hypothesis. Biochemistry 2000; 39: 5274–5279.

Bruun TZ, Hoy M, Gromada J . Scinderin-derived actin-binding peptides inhibit Ca(2+)- and GTPgammaS-dependent exocytosis in mouse pancreatic beta-cells. Eur J Pharmacol 2000; 403: 221–224.

Mizuno K . Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 2013; 25: 457–469.

Huang CJ, Gurlo T, Haataja L, Costes S, Daval M, Ryazantsev S et al. Calcium-activated calpain-2 is a mediator of beta cell dysfunction and apoptosis in type 2 diabetes. J Biol Chem 2010; 285: 339–348.

Nakano M, Nogami S, Sato S, Terano A, Shirataki H . Interaction of syntaxin with alpha-fodrin, a major component of the submembranous cytoskeleton. Biochem Biophys Res Commun 2001; 288: 468–475.

Liu L, Jedrychowski MP, Gygi SP, Pilch PF . Role of insulin-dependent cortical fodrin/spectrin remodeling in glucose transporter 4 translocation in rat adipocytes. Mol Biol Cell 2006; 17: 4249–4256.

Ito T, Suzuki A, Stossel TP . Regulation of water flow by actin-binding protein-induced actin gelatin. Biophys J. 1992; 61: 1301–1305.

Popowicz GM, Schleicher M, Noegel AA, Holak TA . Filamins: promiscuous organizers of the cytoskeleton. Trends Biochem Sci. 2006; 31: 411–419.

Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M et al. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2001; 2: 138–145.

Wilson JR, Biden TJ, Ludowyke RI . Increases in phosphorylation of the myosin II heavy chain, but not regulatory light chains, correlate with insulin secretion in rat pancreatic islets and RINm5F cells. Diabetes 1999; 48: 2383–2389.

Tan JL, Ravid S, Spudich JA . Control of nonmuscle myosins by phosphorylation. Ann Rev Biochem 1992; 61: 721–759.

Andzelm MM, Chen X, Krzewski K, Orange JS, Strominger JL . Myosin IIA is required for cytolytic granule exocytosis in human NK cells. J Exp Med 2007; 204: 2285–2291.

Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993; 362: 318–324.

Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE . A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 1993; 75: 409–418.

Rizo J, Sudhof TC . Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 2002; 3: 641–653.

Chen YA, Scheller RH . SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2001; 2: 98–106.

Scales SJ, Chen YA, Yoo BY, Patel SM, Doung YC, Scheller RH . SNAREs contribute to the specificity of membrane fusion. Neuron 2000; 26: 457–464.

Wheeler MB, Sheu L, Ghai M, Bouquillon A, Grondin G, Weller U et al. Characterization of SNARE protein expression in beta cell lines and pancreatic islets. Endocrinology 1996; 137: 1340–1348.

Jahn R, Scheller RH . SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 2006; 7: 631–643.

Eliasson L, Renstrom E, Ding WG, Proks P, Rorsman P . Rapid ATP-dependent priming of secretory granules precedes Ca(2+)-induced exocytosis in mouse pancreatic B-cells. J Physiol 1997; 503: 399–412.

Jewell JL, Oh E, Thurmond DC . Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. AJP Regul Integr Comp Physiol 2010; 298: R517–R531.

Zhu D, Koo E, Kwan E, Kang Y, Park S, Xie H et al. Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia 2013; 56: 359–369.

Lam PP, Ohno M, Dolai S, He Y, Qin T, Liang T et al. Munc18b is a major mediator of insulin exocytosis in rat pancreatic beta-cells. Diabetes 2013; 62 (7): 2416–2428.

Sadoul K, Lang J, Montecucco C, Weller U, Regazzi R, Catsicas S et al. SNAP-25 is expressed in islets of Langerhans and is involved in insulin release. J Cell Biol 1995; 128: 1019–1028.

Sadoul K, Berger A, Niemann H, Weller U, Roche PA, Klip A et al. SNAP-23 is not cleaved by botulinum neurotoxin E and can replace SNAP-25 in the process of insulin secretion. J Biol Chem 1997; 272: 33023–33027.

Regazzi R, Wollheim CB, Lang J, Theler JM, Rossetto O, Montecucco C et al. VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion. EMBO J 1995; 14: 2723–2730.

Ostenson CG, Gaisano H, Sheu L, Tibell A, Bartfai T . Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes 2006; 55: 435–440.

Andersson SA, Olsson AH, Esguerra JL, Heimann E, Ladenvall C, Edlund A et al. Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol Cell Endocrinol 2012; 364: 36–45.

Hata Y, Slaughter CA, Sudhof TC . Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 1993; 366: 347–351.

Wiseman DA, Kalwat MA, Thurmond DC . Stimulus-induced S-nitrosylation of syntaxin 4 impacts insulin granule exocytosis. J Biol Chem 2011; 286: 16344–16354.

Boswell KL, James DJ, Esquibel JM, Bruinsma S, Shirakawa R, Horiuchi H et al. Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion. J Cell Biol 2012; 197: 301–312.

Shirakawa R, Higashi T, Tabuchi A, Yoshioka A, Nishioka H, Fukuda M et al. Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J Biol Chem 2004; 279: 10730–10737.

Band AM, Ali H, Vartiainen MK, Welti S, Lappalainen P, Olkkonen VM et al. Endogenous plasma membrane t-SNARE syntaxin 4 is present in rab11 positive endosomal membranes and associates with cortical actin cytoskeleton. FEBS Lett 2002; 531: 513–519.

Daniel S, Noda M, Cerione RA, Sharp GW . A link between Cdc42 and syntaxin is involved in mastoparan-stimulated insulin release. Biochemistry 2002; 41: 9663–9671.

Henquin JC . Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 2009; 52: 739–751.

Henquin JC . Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 2000; 49: 1751–1760.

Lorenz MA, El Azzouny MA, Kennedy RT, Burant CF . Metabolome Response to Glucose in the beta-Cell Line INS-1 832/13. J Biol Chem 2013; 288: 10923–10935.

Spegel P, Sharoyko VV, Goehring I, Danielsson AP, Malmgren S, Nagorny CL et al. Time-resolved metabolomics analysis of beta-cells implicates the pentose phosphate pathway in the control of insulin release. Biochem J 2013; 450: 595–605.

DeRose R, Pohlmeyer C, Umeda N, Ueno T, Nagano T, Kuo S et al. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells. J Vis Exp 2012; 61 e 3794.

Wu YI, Wang X, He L, Montell D, Hahn KM . Spatiotemporal control of small GTPases with light using the LOV domain. Methods Enzymol 2011; 497: 393–407.

Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 2009; 461: 104–108.