Shrimp (Pandalopsis dispar) waste hydrolysate as a source of novel β–secretase inhibitors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bursavich MG, Rich DH. Designing non–peptide peptidomimetics in the 21st century: inhibitors targeting conformational ensembles. J Med Chem. 2002;45:541–58.
Byun HG, Kim YT, Park PJ, Lin X, Kim SK. Chitooligosaccharides as a novel β–secretase inhibitor. Carbohyd Polym. 2005;61:198–202.
Chen J, Suetsuna K, Yamauchi F. Isolation and characterization of immunostimulative peptides from soybean. J Nutr Biochem. 1995;6:310–3.
Cheung IWY, Li–Chan ECY. Angiotensin–I–converting enzyme inhibitory activity and bitterness of enzymatically–produced hydrolysates of shrimp (Pandalopsis dispar) processing byproducts investigated by Taguchi design. Food Chem. 2010;122:1003–12.
Cheung LKY, Cheung IWY, Li–Chan ECY. Effects of production factors and egg–bearing period on the antioxidant activity of enzymatic hydrolysates from shrimp (Pandalopsis dispar) processing byproducts. J Agric Food Chem. 2012;60:6823–31.
Citron M. Beta–secretase inhibition for the treatment of Alzheimer's disease–promise and challenge. Trends Pharmacol Sci. 2004;25:92–7.
Cumming JN, Iserloh U, Kennedy ME. Design and development of β–secretase inhibitors. Curr Opin Drug Disc Devel. 2004;7:536–56.
Dey SS, Dora KC. Antioxidative activity of protein hydrolysate produced by alcalase hydrolysis from shrimp waste (Penaeus monodon and Penaeus indicus). J Food Sci Tech. 2014;51:449–57.
He HL, Chen XL, Wu H, Sun CY, Zhang ZY, Zhou BC. High throughput and rapid screening of marine protein hydrolysates enriched in peptides with angiotensin–I–converting enzyme inhibitory activity by capillary electrophoresis. Bioresource Technol. 2007;98:3499–505.
Hong L, He X, Huang X, Chang W, Tang J. Structural features of human memapsin 2 (beta–secretase) and their biological and pathological implications. Acta Biochim Biophys Sin. 2005;36:787–92.
Johnston JA, Liu WW, Coulson DTR, Todd S, Murphy S, Brennan S. Platelet β–secretase activity is increased in Alzheimer’ disease. Neurobiol Aging. 2008;29:661–8.
Kimura R, Devi L, Ohno M. Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic mice. J Neurochem. 2010;113:248–61.
Kwak HM, Jeon SY, Song BH, Kim JG, Lee JM, Lee KB, Jeong HH, Hur J M, Kang YH, Song KS. β–Secretase (BACE1) inhibitors from pomegranate (Punica granatum) husk. Arch Pharm Res. 2005;28:1328–32.
Lee DH, Lee DH, Lee JS. Characterization of a new antidementia β–secretase inhibitory peptide from Saccharomyces cerevisiae. Enzyme Microb Tech. 2007;42:83–8.
Lee HJ, Seong YH, Bae KH, Kwon SH, Kwak HM, Nho SK, Kim KA, Hur JM, Lee KB, Kang YH, Song KS. β–secretase (BACE1) inhibitors from Sanguisorbae radix. Arch Pharm Res. 2011;28:799–803.
McLay RN, Pan W, Kastin AJ. Effects of peptides on animal and human behavior. Peptides. 2001;22:2181–255.
Mendis E, Rajapakse N, Kim SK. Antioxidant properties of a radicals scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agr Food Chem. 2005;53:581–7.
Park IH, Jeon SY, Lee HJ, Kim SI, Song KS. A β–secretase (BACE1) inhibitor hispidinfrom the mycelial cultures of Phellinuslinteus. Planta Med. 2004;70:143–6.
Stachel SJ, Coburn CA, Steele TG, Jones KG, Loutzenhiser EF, Gregro AR. Structure–based design of potent and selective cellpermeable inhibitors of human β–secretase (BACE–1). J ACS Med Chem Lett. 2004;47:6447–50.
Turner RT, Koelsch G, Hong L, Castanheira P, Ermolieff J, Ghosh AK. Subsite specificity of memapsin 2 (β–secretase): implications for inhibitor design. Biochem. 2001;40:10001–6.
World Health Organization and Alzheimer’s Disease International. Dementia: a public health priority. World Health Organization, 2012.