Shoulder muscle endurance: the development of a standardized and reliable protocol

Jean-Sébastien Roy1,2, Bryan Ma3, Joy C MacDermid3,4, Linda J Woodhouse3,5,6
1Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Canada
2Department of Rehabilitation, Faculty of Medicine, Laval University, Quebec City, Canada
3School of Rehabilitation Science, McMaster University, Hamilton, Canada
4Hand and Upper Limb Centre, St. Joseph's Health Centre, London, Canada
5Department of Surgery, Holland Orthopaedic & Arthritic Hospital of Sunnybrook Health Sciences Centre, Toronto, Canada
6Departments of Rehabilitation and Orthopaedics, Hamilton Health Sciences, Hamilton, Canada

Tóm tắt

Shoulder muscle fatigue has been proposed as a possible link to explain the association between repetitive arm use and the development of rotator cuff disorders. To our knowledge, no standardized clinical endurance protocol has been developed to evaluate the effects of muscle fatigue on shoulder function. Such a test could improve clinical examination of individuals with shoulder disorders. Therefore, the purpose of this study was to establish a reliable protocol for objective assessment of shoulder muscle endurance. An endurance protocol was developed on a stationary dynamometer (Biodex System 3). The endurance protocol was performed in isotonic mode with the resistance set at 50% of each subject's peak torque as measured for shoulder external (ER) and internal rotation (IR). Each subject performed 60 continuous repetitions of IR/ER rotation. The endurance protocol was performed by 36 healthy individuals on two separate occasions at least two days apart. Maximal isometric shoulder strength tests were performed before and after the fatigue protocol to evaluate the effects of the endurance protocol and its reliability. Paired t-tests were used to evaluate the reduction in shoulder strength due to the protocol, while intraclass correlation coefficients (ICC) and minimal detectable change (MDC) were used to evaluate its reliability. Maximal isometric strength was significantly decreased after the endurance protocol (P < 0.001). The total work performed during the last third of the protocol was significantly less than the first third of the protocol (P < 0.05). The test-retest reliability of the post-fatigue strength measures was excellent (ICC >0.84). Changes in muscular performance observed during and after the muscular endurance protocol suggests that the protocol did result in muscular fatigue. Furthermore, this study established that the resultant effects of fatigue of the proposed isotonic protocol were reproducible over time. The protocol was performed without difficulty by all volunteers and took less than 10 minutes to perform, suggesting that it might be feasible for clinical practice. This protocol could be used to induce local muscular fatigue in order to evaluate the effects of fatigue on shoulder kinematics or to evaluate changes in shoulder muscle endurance following rehabilitation.

Tài liệu tham khảo

Ebaugh DD, McClure PW, Karduna AR: Effects of shoulder muscle fatigue caused by repetitive overhead activities on scapulothoracic and glenohumeral kinematics. J Electromyogr Kinesiol. 2006, 16: 224-235. 10.1016/j.jelekin.2005.06.015. Zakaria D, Robertson J, MacDermid J, Hartford K, Koval J: Work-related cumulative trauma disorders of the upper extremity: navigating the epidemiologic literature. Am J Ind Med. 2002, 42: 258-269. 10.1002/ajim.10100. Fuller JR, Lomond KV, Fung J, Cote JN: Posture-movement changes following repetitive motion-induced shoulder muscle fatigue. J Electromyogr Kinesiol. 2009, 19: 1043-1052. 10.1016/j.jelekin.2008.10.009. Ebaugh DD, McClure PW, Karduna AR: Scapulothoracic and glenohumeral kinematics following an external rotation fatigue protocol. J Orthop Sports Phys Ther. 2006, 36: 557-571. 10.2519/jospt.2006.2189. Vollestad NK: Measurement of human muscle fatigue. J Neurosci Methods. 1997, 74: 219-227. 10.1016/S0165-0270(97)02251-6. Beelen A, Sargeant AJ: Effect of fatigue on maximal power output at different contraction velocities in humans. J Appl Physiol. 1991, 71: 2332-2337. Blangsted AK, Sjogaard G, Madeleine P, Olsen HB, Sogaard K: Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography. J Electromyogr Kinesiol. 2005, 15: 138-148. 10.1016/j.jelekin.2004.10.004. Minning S, Eliot CA, Uhl TL, Malone TR: EMG analysis of shoulder muscle fatigue during resisted isometric shoulder elevation. J Electromyogr Kinesiol. 2007, 17: 153-159. 10.1016/j.jelekin.2006.01.008. Royer PJ, Kane EJ, Parks KE, Morrow JC, Moravec RR, Christie DS, et al: Fluoroscopic assessment of rotator cuff fatigue on glenohumeral arthrokinematics in shoulder impingement syndrome. J Shoulder Elbow Surg. 2009, 18: 968-975. 10.1016/j.jse.2009.03.002. Teyhen DS, Miller JM, Middag TR, Kane EJ: Rotator cuff fatigue and glenohumeral kinematics in participants without shoulder dysfunction. J Athl Train. 2008, 43: 352-358. 10.4085/1062-6050-43.4.352. Tsai NT, McClure PW, Karduna AR: Effects of muscle fatigue on 3-dimensional scapular kinematics. Arch Phys Med Rehabil. 2003, 84: 1000-1005. 10.1016/S0003-9993(03)00127-8. Szucs K, Navalgund A, Borstad JD: Scapular muscle activation and co-activation following a fatigue task. Med Biol Eng Comput. 2009, 47: 487-495. 10.1007/s11517-009-0485-5. Myers JB, Guskiewicz KM, Schneider RA, Prentice WE: Proprioception and Neuromuscular Control of the Shoulder After Muscle Fatigue. J Athl Train. 1999, 34: 362-367. Bowman TG, Hart JM, McGuire BA, Palmieri RM, Ingersoll CD: A functional fatiguing protocol and deceleration time of the shoulder from an internal rotation perturbation. J Athl Train. 2006, 41: 275-279. Stainsby WN, Brechue WF, Ameredes BT, O'Drobinak DM: Fatigue of mammalian skeletal muscle in situ during repetitive contractions. Can J Physiol Pharmacol. 1991, 69: 226-229. Kahn JF, Monod H: Fatigue induced by static work. Ergonomics. 1989, 32: 839-846. 10.1080/00140138908966846. Fitts RH: Cellular mechanisms of muscle fatigue. Physiol Rev. 1994, 74: 49-94. Borg GA: Perceived exertion: a note on "history" and methods. Med Sci Sports. 1973, 5: 90-93. Kurokawa T, Ueda T: Validity of ratings of perceived exertion as an index of exercise intensity in swimming training. Ann Physiol Anthropol. 1992, 11: 277-288. Shrout PE, Fleiss JL: Intraclass correlation: uses in asessing rater reliability. Psychological Bulletin. 1979, 86: 420-428. 10.1037/0033-2909.86.2.420. Streiner DL, Norman GR: Reliability. Health Measurement Scales: A Practical Guide to their Development and Use. Edited by: Streiner DL, Norman GR. 1995, Oxford: Oxford University Press, 104-127. Finch E, Brooks D, Stratford PW, Mayo NE: Why Measurement properties Are Important. Physical Rehabilitation Outcome Measures: A Guide to Enhanced Clinical Decision Making. Edited by: BC Decker Inc. 2002, Hamilton: Canadian Physiotherapy Association, 26-41. Stratford PW, Binkley J, Solomon P, Finch E, Gill C, Moreland J: Defining the minimum level of detectable change for the Roland-Morris questionnaire. Phys Ther. 1996, 76: 359-365. Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986, 1: 307-310. Smith MW, Ma J, Stafford RS: Bar charts enhance Bland-Altman plots when value ranges are limited. J Clin Epidemiol. 2010, 63: 180-184. 10.1016/j.jclinepi.2009.06.001. Andreacci JL, LeMura LM, Cohen SL, Urbansky EA, Chelland SA, Von Duvillard SP: The effects of frequency of encouragement on performance during maximal exercise testing. J Sports Sci. 2002, 20: 345-352. 10.1080/026404102753576125. Saenz A, Avellanet M, Hijos E, Chaler J, Garreta R, Pujol E, et al: Knee isokinetic test-retest: a multicentre knee isokinetic test-retest study of a fatigue protocol. Eur J Phys Rehabil Med. 2010, 46: 81-88. Hartmann A, Knols R, Murer K, de Bruin ED: Reproducibility of an isokinetic strength-testing protocol of the knee and ankle in older adults. Gerontology. 2009, 55: 259-268. 10.1159/000172832. Pincivero DM, Gear WS, Sterner RL: Assessment of the reliability of high-intensity quadriceps femoris muscle fatigue. Med Sci Sports Exerc. 2001, 33: 334-338. Michener LA, McClure PW, Sennett BJ: American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, patient self-report section: reliability, validity, and responsiveness. J Shoulder Elbow Surg. 2002, 11: 587-594. 10.1067/mse.2002.127096.