Short-term pacing in the mouse alters cardiac expression of connexin43

BMC Physiology - Tập 8 - Trang 1-12 - 2008
Andrianos Kontogeorgis1,2, Riyaz A Kaba3,2, Eunice Kang1, Jonathan E Feig1, Pritha P Gupta1, Marc Ponzio1, Fangyu Liu1, Michael J Rindler4, Andrew L Wit3, Edward A Fisher1,4, Nicholas S Peters3,2, David E Gutstein1,4
1Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, USA
2Department of Cardiology, St Mary's Hospital, Imperial College, London, UK
3Department of Pharmacology, Columbia University, College of Physicians and Surgeons, New York USA
4Department of Cell Biology, New York University School of Medicine, New York, USA

Tóm tắt

Cardiac insults such as ischemia, infarction, hypertrophy and dilatation are often accompanied by altered abundance and/or localization of the connexin43 gap junction protein, which may predispose towards arrhythmic complications. Models of chronic dyssynchronous cardiac activation have also been shown to result in redistribution of connexin43 in cardiomyocytes. We hypothesized that alterations in connexin43 expression and localization in the mouse heart might be induced by ventricular pacing over a short period of time. The subdiaphragmatic approach was used to pace a series of wild type mice for six hours before the hearts were removed for analysis. Mice were paced at 10–15% above their average anesthetized sinus rate and monitored to ensure 1:1 capture. Short-term pacing resulted in a significant reduction in connexin43 mRNA abundance, a partial redistribution of connexin43 from the sarcolemma to a non-sarcolemmal fraction, and accumulation of ubiquitinated connexin43 without a significant change in overall connexin43 protein levels. These early pacing-induced changes in connexin43 expression were not accompanied by decreased cardiac function, prolonged refractoriness or increased inducibility into sustained arrhythmias. Our data suggest that short-term pacing is associated with incipient changes in the expression of the connexin43 gap junction, possibly including decreased production and a slowed rate of degradation. This murine model may facilitate the study of early molecular changes induced by pacing and may ultimately assist in the development of strategies to prevent gap junction remodeling and the associated arrhythmic complications of cardiac disease.

Tài liệu tham khảo

Zheng ZJ, Croft JB, Giles WH, Mensah GA: Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001, 104 (18): 2158-2163. 10.1161/hc4301.098254. Nattel S, Maguy A, Le Bouter S, Yeh YH: Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007, 87 (2): 425-456. 10.1152/physrev.00014.2006. Kaprielian RR, Gunning M, Dupont E, Sheppard MN, Rothery SM, Underwood R, Pennell DJ, Fox K, Pepper J, Poole-Wilson PA, Severs NJ: Downregulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation. 1998, 97 (7): 651-660. Kitamura H, Ohnishi Y, Yoshida A, Okajima K, Azumi H, Ishida A, Galeano EJ, Kubo S, Hayashi Y, Itoh H, Yokoyama M: Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. J Cardiovasc Electrophysiol. 2002, 13 (9): 865-870. 10.1046/j.1540-8167.2002.00865.x. Matsushita T, Oyamada M, Fujimoto K, Yasuda Y, Masuda S, Wada Y, Oka T, Takamatsu T: Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res. 1999, 85 (11): 1046-1055. Peters NS, Coromilas J, Severs NJ, Wit AL: Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 1997, 95 (4): 988-996. Severs NJ, Coppen SR, Dupont E, Yeh HI, Ko YS, Matsushita T: Gap junction alterations in human cardiac disease. Cardiovasc Res. 2004, 62 (2): 368-377. 10.1016/j.cardiores.2003.12.007. Kanno S, Saffitz JE: The role of myocardial gap junctions in electrical conduction and arrhythmogenesis. Cardiovasc Pathol. 2001, 10 (4): 169-177. 10.1016/S1054-8807(01)00078-3. Danik SB, Liu F, Zhang J, Suk HJ, Morley GE, Fishman GI, Gutstein DE: Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res. 2004, 95 (10): 1035-1041. 10.1161/01.RES.0000148664.33695.2a. Spragg DD, Akar FG, Helm RH, Tunin RS, Tomaselli GF, Kass DA: Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. Cardiovasc Res. 2005, 67 (1): 77-86. 10.1016/j.cardiores.2005.03.008. Patel PM, Plotnikov A, Kanagaratnam P, Shvilkin A, Sheehan CT, Xiong W, Danilo P, Rosen MR, Peters NS: Altering ventricular activation remodels gap junction distribution in canine heart. J Cardiovasc Electrophysiol. 2001, 12 (5): 570-577. 10.1046/j.1540-8167.2001.00570.x. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE: Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res. 2000, 87 (8): 656-662. Gutstein DE, Danik SB, Sereysky JB, Morley GE, Fishman GI: Subdiaphragmatic murine electrophysiological studies: sequential determination of ventricular refractoriness and arrhythmia induction. Am J Physiol Heart Circ Physiol. 2003, 285 (3): H1091-6. Gutstein DE, Danik SB, Lewitton S, France D, Liu F, Chen FL, Zhang J, Ghodsi N, Morley GE, Fishman GI: Focal gap junction uncoupling and spontaneous ventricular ectopy. Am J Physiol Heart Circ Physiol. 2005, 289 (3): H1091-8. 10.1152/ajpheart.00095.2005. Gutstein DE, Liu FY, Meyers MB, Choo A, Fishman GI: The organization of adherens junctions and desmosomes at the cardiac intercalated disc is independent of gap junctions. J Cell Sci. 2003, 116 (Pt 5): 875-885. 10.1242/jcs.00258. Dolber PC, Beyer EC, Junker JL, Spach MS: Distribution of gap junctions in dog and rat ventricle studied with a double-label technique. J Mol Cell Cardiol. 1992, 24 (12): 1443-1457. 10.1016/0022-2828(92)91085-J. Yamada KA, Kanter EM, Green KG, Saffitz JE: Transmural distribution of connexins in rodent hearts. J Cardiovasc Electrophysiol. 2004, 15 (6): 710-715. 10.1046/j.1540-8167.2004.03514.x. Johnson CM, Kanter EM, Green KG, Laing JG, Betsuyaku T, Beyer EC, Steinberg TH, Saffitz JE, Yamada KA: Redistribution of connexin45 in gap junctions of connexin43-deficient hearts. Cardiovasc Res. 2002, 53 (4): 921-935. 10.1016/S0008-6363(01)00522-3. Atkinson PH: HeLa cell plasma membranes. Methods Cell Biol. 1973, 7: 157-188. Trogan E, Choudhury RP, Dansky HM, Rong JX, Breslow JL, Fisher EA: Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A. 2002, 99 (4): 2234-2239. 10.1073/pnas.042683999. Sambelashvili AT, Nikolski VP, Efimov IR: Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage. Am J Physiol Heart Circ Physiol. 2004, 286 (6): H2183-94. 10.1152/ajpheart.00637.2003. Pitzalis MV, Iacoviello M, Romito R, Massari F, Rizzon B, Luzzi G, Guida P, Andriani A, Mastropasqua F, Rizzon P: Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol. 2002, 40 (9): 1615-1622. 10.1016/S0735-1097(02)02337-9. Schmidt M, Bromsen J, Herholz C, Adler K, Neff F, Kopf C, Block M: Evidence of left ventricular dyssynchrony resulting from right ventricular pacing in patients with severely depressed left ventricular ejection fraction. Europace. 2007, 9 (1): 34-40. 10.1093/europace/eul131. Beardslee MA, Laing JG, Beyer EC, Saffitz JE: Rapid turnover of connexin43 in the adult rat heart. Circ Res. 1998, 83 (6): 629-635. Darrow BJ, Laing JG, Lampe PD, Saffitz JE, Beyer EC: Expression of multiple connexins in cultured neonatal rat ventricular myocytes. Circ Res. 1995, 76 (3): 381-387. Laird DW, Puranam KL, Revel JP: Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J. 1991, 273(Pt 1): 67-72. Paradies NE, Grunwald GB: Purification and characterization of NCAD90, a soluble endogenous form of N-cadherin, which is generated by proteolysis during retinal development and retains adhesive and neurite-promoting function. J Neurosci Res. 1993, 36 (1): 33-45. 10.1002/jnr.490360105. Pon YL, Auersperg N, Wong AS: Gonadotropins regulate N-cadherin-mediated human ovarian surface epithelial cell survival at both post-translational and transcriptional levels through a cyclic AMP/protein kinase A pathway. J Biol Chem. 2005, 280 (15): 15438-15448. 10.1074/jbc.M410766200. Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY: Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell. 2007, 128 (3): 547-560. 10.1016/j.cell.2006.12.037. O'Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E: Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res. 1999, 84 (5): 562-570. Lu L, Mei DF, Gu AG, Wang S, Lentzner B, Gutstein DE, Zwas D, Homma S, Yi GH, Wang J: Exercise training normalizes altered calcium-handling proteins during development of heart failure. J Appl Physiol. 2002, 92 (4): 1524-1530. Poelzing S, Rosenbaum DS: Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol. 2004, 287 (4): H1762-70. 10.1152/ajpheart.00346.2004. Prinzen FW, Hunter WC, Wyman BT, McVeigh ER: Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol. 1999, 33 (6): 1735-1742. 10.1016/S0735-1097(99)00068-6. McVeigh ER, Prinzen FW, Wyman BT, Tsitlik JE, Halperin HR, Hunter WC: Imaging asynchronous mechanical activation of the paced heart with tagged MRI. Magn Reson Med. 1998, 39 (4): 507-513. 10.1002/mrm.1910390402. Eckardt D, Theis M, Degen J, Ott T, van Rijen HV, Kirchhoff S, Kim JS, de Bakker JM, Willecke K: Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion. J Mol Cell Cardiol. 2004, 36 (1): 101-110. 10.1016/j.yjmcc.2003.10.006. Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI: Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res. 2001, 88 (3): 333-339. van Rijen HV, Eckardt D, Degen J, Theis M, Ott T, Willecke K, Jongsma HJ, Opthof T, de Bakker JM: Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation. 2004, 109 (8): 1048-1055. 10.1161/01.CIR.0000117402.70689.75. Laing JG, Beyer EC: The gap junction protein connexin43 is degraded via the ubiquitin proteasome pathway. J Biol Chem. 1995, 270 (44): 26399-26403. 10.1074/jbc.270.44.26399. Laing JG, Tadros PN, Westphale EM, Beyer EC: Degradation of connexin43 gap junctions involves both the proteasome and the lysosome. Exp Cell Res. 1997, 236 (2): 482-492. 10.1006/excr.1997.3747. Leithe E, Rivedal E: Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment. J Biol Chem. 2004, 279 (48): 50089-50096. 10.1074/jbc.M402006200. Leithe E, Rivedal E: Epidermal growth factor regulates ubiquitination, internalization and proteasome-dependent degradation of connexin43. J Cell Sci. 2004, 117 (Pt 7): 1211-1220. 10.1242/jcs.00951.