Shape descriptors of the “never resting” microglia in three different acute brain injury models in mice

Intensive Care Medicine Experimental - Tập 3 Số 1 - 2015
Elisa R. Zanier1, Stefano Fumagalli1, Carlo Perego1, Francesca Pischiutta1, Maria-Grazia De Simoni1
1IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Department of Neuroscience, Via La Masa 19, 20156, Milan, Italy

Tóm tắt

Abstract Background The study of microglia and macrophage (M/M) morphology represents a key tool to understand the functional activation state and the pattern of distribution of these cells in acute brain injury. The identification of reliable quantitative morphological parameters is urgently needed to understand these cell roles in brain injury and to explore strategies aimed at therapeutically manipulating the inflammatory response. Methods We used three different clinically relevant murine models of focal injury, namely, controlled cortical impact brain injury (traumatic brain injury (TBI)) and transient and permanent occlusion of middle cerebral artery (tMCAo and pMCAo, respectively). Twenty-four hours after injury, M/M cells were labeled by CD11b, and ×40 photomicrographs were acquired by unbiased sampling of the lesion core using a motorized stage microscope. Images were processed with Fiji software to obtain shape descriptors. Results We validated several parameters, including area, perimeter, Feret’s diameter (caliper), circularity, aspect ratio, and solidity, providing quantitative information on M/M morphology over wide tissue portions. We showed that the shape descriptors that best represent M/M ramification/elongation are area and perimeter, while circularity and solidity provide information on the ameboid shape. We also provide evidence of the involvement of different populations in local inflammatory events, with macrophages replacing microglia into the lesion core when reperfusion does not occur. Analysis of CD45high+ cell morphology, whose shape does not change, did not yield any difference, thus confirming the reliability of the approach. Conclusions We have defined specific morphological features that M/M acquire in response to different acute insults by applying a sensitive and readily applicable approach to cell morphological analysis in the brain tissue. Potential application of this method can be extended to all cell types able to change shape following activation, e.g., astrocytes, or to different disease states, including chronic pathologies.

Từ khóa


Tài liệu tham khảo

Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145, doi:10.1146/annurev.immunol.021908.132528

Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394, doi:10.1038/nn1997

Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468:253–262, doi:10.1038/nature09615

McWhorter FY, Wang T, Nguyen P et al (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A 110:17253–17258, doi:10.1073/pnas.1308887110

Ajami B, Bennett JL, Krieger C et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543, doi:10.1038/nn2014

Ajami B, Bennett JL, Krieger C et al (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149, doi:10.1038/nn.2887

Ransohoff RM (2011) Microglia and monocytes: ‘tis plain the twain meet in the brain. Nat Neurosci 14:1098–1100, doi:10.1038/nn.2917

Zanier ER, Pischiutta F, Riganti L et al (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurother J Am Soc Exp Neurother, doi:10.1007/s13311-014-0277-y

Lampron A, Elali A, Rivest S (2013) Innate immunity in the CNS: redefining the relationship between the CNS and its environment. Neuron 78:214–232, doi:10.1016/j.neuron.2013.04.005

Saijo K, Crotti A, Glass CK (2013) Regulation of microglia activation and deactivation by nuclear receptors. Glia 61:104–111, doi:10.1002/glia.22423

Fumagalli S, Perego C, Ortolano F, De Simoni M-G (2013) CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia 61:827–842, doi:10.1002/glia.22474

Cunningham CL, Martínez-Cerdeño V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci Off J Soc Neurosci 33:4216–4233, doi:10.1523/JNEUROSCI. 3441-12.2013

Vinet J, van Weering HRJ, Heinrich A et al (2012) Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflammation 9:27, doi:10.1186/1742-2094-9-27

Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553, doi:10.1152/physrev.00011.2010

Masuda T, Croom D, Hida H, Kirov SA (2011) Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. Glia 59:1744–1753, doi:10.1002/glia.21220

Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758, doi:10.1038/nn1472

Sica A, Melillo G, Varesio L (2011) Hypoxia: a double-edged sword of immunity. J Mol Med Berl Ger 89:657–665, doi:10.1007/s00109-011-0724-8

Gesuete R, Storini C, Fantin A et al (2009) Recombinant C1 inhibitor in brain ischemic injury. Ann Neurol 66:332–342, doi:10.1002/ana.21740

Perego C, Fumagalli S, De Simoni M-G (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 8:174, doi:10.1186/1742-2094-8-174

Zanier ER, Montinaro M, Vigano M et al (2011) Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med 39:2501–2510, doi:10.1097/CCM.0b013e31822629ba

Capone C, Frigerio S, Fumagalli S et al (2007) Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PloS One 2:e373, doi:10.1371/journal.pone.0000373

De Simoni MG, Storini C, Barba M et al (2003) Neuroprotection by complement (C1) inhibitor in mouse transient brain ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 23:232–239

Swanson RA, Morton MT, Tsao-Wu G et al (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 10:290–293, doi:10.1038/jcbfm.1990.47

Longhi L, Gesuete R, Perego C et al (2011) Long-lasting protection in brain trauma by endotoxin preconditioning. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 31:1919–1929, doi:10.1038/jcbfm.2011.42

Macrae IM (2011) Preclinical stroke research—advantages and disadvantages of the most common rodent models of focal ischaemia. Br J Pharmacol 164:1062–1078, doi:10.1111/j.1476-5381.2011.01398.x

Franklin KBJ and Paxinos G The Mouse Brain in Stereotaxic Coordinates. Academic Press

Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682, doi:10.1038/nmeth.2019

David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399, doi:10.1038/nrn3053

Perego C, Fumagalli S, De Simoni M-G (2013) Three-dimensional confocal analysis of microglia/macrophage markers of polarization in experimental brain injury. J Vis Exp JoVE, doi:10.3791/50605

Saederup N, Chan L, Lira SA, Charo IF (2008) Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis. Circulation 117:1642–1648, doi:10.1161/CIRCULATIONAHA.107.743872

Prinz M, Priller J (2010) Tickets to the brain: role of CCR2 and CX3CR1 in myeloid cell entry in the CNS. J Neuroimmunol 224:80–84, doi:10.1016/j.jneuroim.2010.05.015

Ingersoll MA, Platt AM, Potteaux S, Randolph GJ (2011) Monocyte trafficking in acute and chronic inflammation. Trends Immunol 32:470–477, doi:10.1016/j.it.2011.05.001

Varvel NH, Grathwohl SA, Baumann F et al (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci U S A 109:18150–18155, doi:10.1073/pnas.1210150109

Orsini F, Villa P, Parrella S et al (2012) Targeting mannose binding lectin confers long lasting protection with a surprisingly wide therapeutic window in cerebral ischemia. Circulation, doi:10.1161/CIRCULATIONAHA.112.103051

Olah M, Biber K, Vinet J, Boddeke HWGM (2011) Microglia phenotype diversity. CNS Neurol Disord Drug Targets 10:108–118

Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

Cho BP, Song DY, Sugama S et al (2006) Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 53:92–102, doi:10.1002/glia.20265

Lambertsen KL, Deierborg T, Gregersen R et al (2011) Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 70:481–494, doi:10.1097/NEN.0b013e31821db3aa

Taylor SE, Morganti-Kossmann C, Lifshitz J, Ziebell JM (2014) Rod microglia: a morphological definition. PloS One 9:e97096, doi:10.1371/journal.pone.0097096

Pischiutta F, D’Amico G, Dander E et al (2014) Immunosuppression does not affect human bone marrow mesenchymal stromal cell efficacy after transplantation in traumatized mice brain. Neuropharmacology 79:119–126, doi:10.1016/j.neuropharm.2013.11.001

Kigerl KA, Gensel JC, Ankeny DP et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci Off J Soc Neurosci 29:13435–13444, doi:10.1523/JNEUROSCI. 3257-09.2009

Chu HX, Kim HA, Lee S et al (2014) Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 34:450–459, doi:10.1038/jcbfm.2013.217

Zhou W, Liesz A, Bauer H et al (2013) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol Zurich Switz 23:34–44, doi:10.1111/j.1750-3639.2012.00614.x

Denes A, Vidyasagar R, Feng J et al (2007) Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 27:1941–1953, doi:10.1038/sj.jcbfm.9600495