Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action

Molecular Neurobiology - Tập 55 - Trang 3755-3774 - 2017
Zorica Stojić-Vukanić1, Jelena Kotur-Stevuljević2, Mirjana Nacka-Aleksić3, Duško Kosec4, Ivana Vujnović4, Ivan Pilipović4, Mirjana Dimitrijević5, Gordana Leposavić3
1Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
2Department for Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
3Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
4Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
5Department of Immunology, Institute for Biological Research “Siniša Stanković,” University of Belgrade, Belgrade, Serbia

Tóm tắt

In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-γ+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCRαβ− microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCRαβ– cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage.

Tài liệu tham khảo

Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1(4):232–241.doi:10.1016/S1474-4422(02)00102-3 Ciccarelli O, Barkhof F, Bodini B, De Stefano N, Golay X, Nicolay K, Pelletier D, Pouwels PJ et al (2014) Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol 13(8):807–822. doi:10.1016/S1474-4422(14)70101-2 Hammann KP, Hopf HC (1986) Monocytes constitute the only peripheral blood cell population showing an increased burst activity in multiple sclerosis patients. Int Arch Allergy Appl Immunol 81(3):230–234. doi:10.1159/000234139 Koch MW, Ramsaransing GSM, Arutjunyan AV, Stepanov M, Teelken A, Heersema DJ, De Keyser J (2005) Oxidative stress in serum and peripheral blood leukocytes in patients with different disease courses of multiple sclerosis. J Neurol 253(4):483–487. doi:10.1007/s00415-005-0037-3 Nikić I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Brück W, Bishop D et al (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17(4):495–499. doi:10.1038/nm.2324 Van Horssen J, Witte ME, Schreibelt G, de Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta 1812(2):141–150. doi:10.1016/j.bbadis.2010.06.011 Dimitrijević M, Kotur-Stevuljević J, Stojić-Vukanić Z, Vujnović I, Pilipović I, Nacka-Aleksić M, Leposavić G (2017) Sex difference in oxidative stress parameters in spinal cord of rats with experimental autoimmune encephalomyelitis: relation to neurological deficit. Neurochem Res 42:481–492. doi:10.1007/s11064-016-2094-7 Croxford AL, Spath S, Becher B (2015) GM-CSF in neuroinflammation: licensing myeloid cells for tissue damage. Trends Immunol 36(10):651–662. doi:10.1016/j.it.2015.08.004 Linker RA, Lee DS, Ryan S, Van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134(3):678–692. doi:10.1093/brain/awq386 Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K et al (2012) CONFIRM study investigators, placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367(12):1087–1097. doi:10.1056/nejmoa1206328 Gold R, Kappos L, Arnold DI, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT et al (2012) DEFINE study investigators, placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107. doi:10.1056/nejmoa1114287 Schulze-Topphoff U, Varrin-Doyer M, Pekarek K, Spencer CM, Shetty A, Sagan SA, Cree BA, Sobel RA et al (2016) Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc Natl Acad Sci U S A 113(17):4777–4782. doi:10.1073/pnas.1603907113 Pitarokoili K, Ambrosius B, Meyer D, Schrewe L, Gold R (2015) Dimethyl fumarate ameliorates Lewis rat experimental autoimmune neuritis and mediates axonal protection. PLoS One 10(11):e0143416. doi:10.1371/journal.pone.0143416 Stoof TJ, Flier J, Sampat S, Nieboer C, Tensen CP, Boorsma DM (2001) The antipsoriatic drug dimethylfumarate strongly suppresses chemokine production in human keratinocytes and peripheral blood mononuclear cells. Br J Dermatol 144(6):1114–1120. doi:10.1046/j.1365-2133.2001.04220.x Gerdes S, Shakery K, Mrowietz U (2007) Dimethylfumarate inhibits nuclear binding of nuclear factor κB but not of nuclear factor of activated T cells and CCAAT/enhancer binding protein beta in activated human T cells. Br J Dermatol 156(5):838–842. doi:10.1111/j.1365-2133.2007.07779.x Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295. doi:10.1074/jbc.r900010200 Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, Zeng W, Ryan S et al (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341(1):274–284. doi:10.1124/jpet.111.190132 Gill AJ, Kolson DL (2013) Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy. Crit Rev Immunol 33(4):307–359. doi:10.1615/CritRevImmunol.2013007247 Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophy Acta 1783(5):713–727. doi:10.1016/j.bbamcr.2008.01.002 Bove R, Chitnis T (2013) Sexual disparities in the incidence and course of MS. Clin Immunol 149(2):201–210. doi:10.1016/j.clim.2013.03.005 Giatti S, D’Intino G, Maschi O, Pesaresi M, Garcia-Segura LM, Calza L, Caruso D, Melcangi RC (2010) Acute experimental autoimmune encephalomyelitis induces sex dimorphic changes in neuroactive steroid levels. Neurochem Int 56(1):118–127. doi:10.1016/j.neuint.2009.09.009 Nacka-Aleksić M, Djikić J, Pilipović I, Stojić-Vukanić Z, Kosec D, Bufan B, Arsenović-Ranin N, Dimitrijević M et al (2015) Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: Sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun 49:101–118. doi:10.1016/j.bbi.2015.04.017 Kawakami N, Lassmann S, Li Z, Odoardi F, Ritter T, Ziemssen T, Klinkert WE, Ellwart JW et al (2004) The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J Exp Med 199(2):185–197. doi:10.1084/jem.20031064 Zagni E, Simoni L, Colombo D (2016) Sex and gender differences in central nervous system-related disorders. Neurosci J 2016:2827090. doi:10.1155/2016/2827090 Li R, Sun X, Shu Y, Mao Z, Xiao L, Qiu W, Lu Z, Hu X (2017) Sex differences in outcomes of disease-modifying treatments for multiple sclerosis: a systematic review. Mult Scler Relat Dis 12:23–28. doi:10.1016/j.msard.2017.01.001 Bar-Or A, Gold R, Kappos L, Arnold DL, Giovannoni G, Selmaj K, O'Gorman J, Stephan M et al (2013) Clinical efficacy of BG-12 (dimethyl fumarate) in patients with relapsing-remitting multiple sclerosis: subgroup analyses of the DEFINE study. J Neurol 260:2297–2305. doi:10.1007/s00415-013-6954-7 Hutchinson M, Fox RJ, Miller DH, Phillips JT, Kita M, Havrdova E, O’Gorman J, Zhang R et al (2013) Clinical efficacy of BG-12 (dimethyl fumarate) in patients with relapsing-remitting multiple sclerosis: subgroup analyses of the CONFIRM study. J Neurol 260:2286–2296. doi:10.1007/s00415-013-6968-1 Djikić J, Nacka-Aleksić M, Pilipović I, Stojić-Vukanić Z, Bufan B, Kosec D, Dimitrijević M, Leposavić G (2014) Age-associated changes in rat immune system: Lessons learned from experimental autoimmune encephalomyelitis. Exp Gerontol 58:179–197. doi:10.1016/j.exger.2014.08.005 Ridderstad Wollberg A, Ericsson-Dahlstrand A, Juréus A, Ekerot P, Simon S, Nilsson M, Wiklund S-J, Berg A-L et al (2014) Pharmacological inhibition of the chemokine receptor CX3CR1 attenuates disease in a chronic-relapsing rat model for multiple sclerosis. PNAS 111(14):5409–5414. doi:10.1073/pnas.1316510111 Dimitrijević M, Aleksić I, Vujić V, Stanojević S, Pilipović P, von Hörsten S, Leposavić G (2014) Peritoneal exudate cells from long-lived rats exhibit increased IL-10/IL-1β expression ratio and preserved NO/urea ratio following LPS-stimulation in vitro. Age (Dordr) 36(4):9696. doi:10.1007/s11357-014-9696-2 Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp. 123–132 Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175 Girotti MJ, Khan N, McLellan BA (1991) Early measurement of systemic lipid peroxidation products in the plasma of major blunt trauma patients. J Trauma 31(1):32–35. doi:10.1097/00005373-199101000-00007 Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49(5):1304–1313. doi:10.1038/ki.1996.186 Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12):1103–1111. doi:10.1016/j.clinbiochem Kotur-Stevuljevic J, Bogavac-Stanojevic N, Jelic-Ivanovic Z, Stefanovic A, Gojkovic T, Joksic J, Sopic M, Gulan B et al (2015) Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients. Atherosclerosis 241(1):192–198. doi:10.1016/j.atherosclerosis.2015.05.016 Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4):277–285. doi:10.1016/j.clinbiochem.2003.11.015 Alamdari DH, Paletas K, Pegiou T, Sarigianni M, Befani C, Koliakos G (2007) A novel assay for the evaluation of the prooxidant-antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients. Clin Biochem 40(3–4):248–254. doi:10.1016/j.clinbiochem.2006.10.017 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 Fillmore PD, Blankenhorn EP, Zachary JF, Teuscher C (2004) Adult gonadal hormones selectively regulate sexually dimorphic quantitative traits observed in experimental allergic encephalomyelitis. Am J Pathol 164(1):167–175. doi:10.1016/S0002-9440(10)63107-0 Damsker JM, Hansen AM, Caspi RR (2010) Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci 1183:211–221. doi:10.1111/j.1749-6632.2009.05133.x Flügel A, Berkowicz T, Ritter T, Labeur M, Jenne DE, Li Z, Ellwart JW, Willem M et al (2001) Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14(5):547–560. doi:10.1016/S1074-7613(01)00143-1 Treumer F, Zhu K, Gläser R, Mrowietz U (2003) Dimethylfumarate is a potent inducer of apoptosis in human T cells. J Invest Dermatol 121(6):1383–1388. doi:10.1111/j.1523-1747.2003.12605.x Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12(6):560–567. doi:10.1038/ni.2027 El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN et al (2011) The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12(6):568–575. doi:10.1038/ni.2031 Stojić-Vukanić Z, Pilipović I, Vujnović I, Nacka-Aleksić M, Petrović R, Arsenović-Ranin N, Dimitrijević M, Leposavić G (2016) GM-CSF-producing Th cells in rats sensitive and resistant to experimental autoimmune encephalomyelitis. PLoS One 11(11):e0166498. doi:10.1371/journal.pone.0166498 Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L et al (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature 467(7318):967–971. doi:10.1038/nature09447 Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448 Gandhi R, Laroni A, Weiner HL (2010) Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 221(1–2):7–14. doi:10.1016/j.jneuroim.2009.10.015 Murphy AC, Lalor SJ, Lynch MA, Mills KH (2010) Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 24(4):641–651. doi:10.1016/j.bbi.2010.01.014 Han R, Xiao J, Zhai H, Hao J (2016) Dimethyl fumarate attenuates experimental autoimmune neuritis through the nuclear factor erythroid-derived 2-related factor 2/hemoxygenase-1 pathway by altering the balance of M1/M2 macrophages. J Neuroinflammation 13(1):97. doi:10.1186/s12974-016-0559-x Bullard DC, Hu X, Schoeb TR, Axtell RC, Raman C, Barnum SR (2005) Critical requirement of CD11b (Mac-1) on T cells and accessory cells for development of experimental autoimmune encephalomyelitis. J Immunol 175(10):6327–6333. doi:10.4049/jimmunol.175.10.6327 Mindur JE, Ito N, Dhib-Jalbut S, Ito K (2014) Early treatment with anti-VLA-4 mAb can prevent the infiltration and/or development of pathogenic CD11b+ CD4+ T cells in the CNS during progressive EAE. PLoS One 9(6):e99068. doi:10.1371/journal.pone.0099068 Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ (2011) Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 237(1–2):73–79. doi:10.1016/j.jneuroim.2011.06.006 Fehr E-M, Kierschke S, Max R, Gerber A, Lorenz H-M, Schiller M (2009) Apototic cell-derived membrane vesicles induce CD83 expression on human mdDC. Autoimmunity 42(4):322–324. doi:10.1080/08916930902832173 Stöger JL, Goossens P, de Winther MP (2010) Macrophage heterogeneity: relevance and functional implications in atherosclerosis. Curr Vasc Pharmacol 8(2):233–248. doi:10.2174/157016110790886983 Munder M, Eichmann K, Morán JM, Centeno F, Soler G, Modolell M (1999) Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163(7):3771–3777 Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. doi:10.1186/1742-2094-11-98 Ahn M, Yang W, Kim H, Jin JK, Moon C, Shin T (2012) Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res 1453:77–86. doi:10.1016/j.brainres.2012.03.023 Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, Via LE, Barry CE 3rd et al (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191(2):773–784. doi:10.4049/jimmunol.1300113 Honorat A, Kinoshita M, Okuno T, Takata K, Koda T, Tada S, Shirakura T, Fujimura H et al (2013) Xanthine oxidase mediates axonal and myelin loss in a murine model of multiple sclerosis. PLoS One 8:e71329. doi:10.1371/journal.pone.0071329 Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. doi:10.1089/ars.2011.3999 Huang H, Taraboletti A, Shriver LP (2015) Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes. Redox Biol 5:169–175. doi:10.1016/j.redox.2015.04.011 Chen H, Assmann JC, Krenz A, Rahman M, Grimm M, Karsten CM, Köhl J, Offermanns S et al (2014) Hydrocarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE. J Clin Invest 124(5):2188–21192. doi:10.1172/JCI72151 Lim JL, Van der Pol SMA, Di Dio F, Van het Hof B, Kooij G, De Vries HE, Van Horssen J (2016) Protective effects of monomethyl fumarate at the inflamed blood–brain barrier. Microvasc Res 105:61–69. doi:10.1016/j.mvr.2015.12.003 Wang L-F, Yokoyama KK, Lin C-L, Chen T-Y, Hsiao H-W, Chiang P-C, Hsu C (2016) Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice. Sci Reports 6:26358. doi:10.1038/srep26358 Rohrer PR, Rudraiah S, Goedken MJ, Manautou JE (2014) Is nuclear factor erythroid 2–related factor 2 responsible for sex differences in susceptibility to acetaminophen-induced hepatotoxicity in mice? Drug Metab Dispos 42(10):1663–1674. doi:10.1124/dmd.114.059006 Kratschmar DV, Calabrese D, Walsh J, Lister A, Birk J, Appenzeller-Herzog C, Moulin P, Goldring CE et al (2012) Suppression of the Nrf2-dependent antioxidant response by glucocorticoids and 11β-HSD1-mediated glucocorticoid activation in hepatic cells. PLoS One 7(5):e36774. doi:10.1371/journal.pone.0036774 Rubant SA, Ludwig RJ, Diehl S, Hardt K, Kaufmann R, Pfeilschifter JM, Boehncke WH (2008) Dimethylfumarate reduces leukocyte rolling in vivo through modulation of adhesion molecule expression. J Invest Dermatol 128(2):326–331. doi:10.1038/sj.jid.5700996 Wallbrecht K, Drick N, Hund AC, Schon MP (2011) Downregulation of endothelial adhesion molecules by dimethylfumarate, but not monomethylfumarate, and impairment of dynamic lymphocyte-endothelial cell interactions. Exp Dermatol 20(12):980–985. doi:10.1111/j.1600-0625.2011.01376.x Dehmel T, Dobert M, Pankratz S, Leussink VI, Hartung HP, Wiendl H, Kieseier BC (2014) Monomethylfumarate reduces in vitro migration of mononuclear cells. Neurol Sci 35(7):1121–1125. doi:10.1007/s10072-014-1663-2 Zhao X, Eghbali-Webb M (2002) Gender-related differences in basal and hypoxia-induced activation of signal transduction pathways controlling cell cycle progression and apoptosis, in cardiac fibroblasts. Endocrine 18(2):137–145. doi:10.1385/ENDO:18:2:137 Ritzel RM, Capozzi LA, McCullough LD (2013) Sex, stroke, and inflammation: the potential for estrogen-mediated immunoprotection in stroke. Horm Behav 63(2):238–253. doi:10.1016/j.yhbeh.2012.04.007 Ebihara S, Tajima H, Ono M (2016) Nuclear factor erythroid 2-related factor 2 is a critical target for the treatment of glucocorticoid-resistant lupus nephritis. Arthritis Res Ther 18(1):139. doi:10.1186/s13075-016-1039-5 Kopf M, Ruedl C, Schmitz N, Gallimore A, Lefrang K, Ecabert B, Odermatt B, Bachmann MF (1999) OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11(6):699–708. doi:10.1016/S1074-7613(00)80144-2 Fujimoto Y, Tedder TF (2006) CD83: a regulatory molecule of the immune system with great potential for therapeutic application. J Med Dent Sci 53(2):85–91 Hock BD, Kato M, McKenzie JL, Hart DN (2001) A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. Int Immunol 13(7):959–967. doi:10.1093/intimm/13.7.959 Lechmann M, Krooshoop DJ, Dudziak D, Kremmer E, Kuhnt C, Figdor CG, Schuler G, Steinkasserer A (2001) The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J Exp Med 194(12):1813–1821 Sénéchal B, Boruchov AM, Reagan JL, Hart DN, Young JW (2004) Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood 103(11):4207–4215. doi:10.1182/blood-2003-12-4350 Zinser E, Lechmann M, Golka A, Lutz MB, Steinkasserer A (2004) Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83. J Exp Med 200(3):345–351. doi:10.1084/jem.20030973 Bates JM, Flanagan K, Mo L, Ota N, Ding J, Ho S, Liu S, Roose-Girma M et al (2015) Dendritic cell CD83 homotypic interactions regulate inflammation and promote mucosal homeostasis. Mucosal Immunol 8(2):414–428. doi:10.1038/mi.2014.79 Ghoreschi K, Bruck J, Kellerer C, Deng C, Peng H, Rothfuss O, Hussain RZ, Gocke AR et al (2011) Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med 208(11):2291–2303. doi:10.1084/jem.20100977 Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115. doi:10.1038/cr.2010.178 Mühl H, Bachmann M, Pfeilschifter J (2011) Inducible NO synthase and antibacterial host defence in times of Th17/Th22/T22 immunity. Cell Microbiol 13(3):340–348. doi:10.1111/j.1462-5822.2010.01559.x Bonacasa B, Perez C, Salom MG, Lopez B, Saez-Belmonte F, Martinez P, Casas T, Fenoy FJ et al (2013) Sexual dimorphism in renal heme-heme oxygenase system in the streptozotocin diabetic rats. Curr Pharm Des 19(15):2678–2686. doi:10.2174/1381612811319150002 Schmidt TJ, Ak M, Mrowietz U (2007) Reactivity of dimethyl fumarate and methylhydrogen fumarate towards glutathione and N-acetyl-L-cysteine-preparation of S-substituted thiosuccinic acid esters. Bioorg Med Chem 15(1):333–342. doi:10.1016/j.bmc.2006.09.053 Stein DG (2001) Brain damage, sex hormones and recovery: a new role for progesterone and estrogen. Trends Neurosci 24(7):386–391. doi:10.1016/S0166-2236(00)01821-X Penaloza C, Estevez B, Orlanski S, Sikorska M, Walker R, Smith C, Smith B, Lockshin RA et al (2009) Sex of the cell dictates its response: Differential gene expression and sensitivity to cell death inducing stress in male and female cells. FASEB J 23(6):1869–1879. doi:10.1096/fj.08-119388 Cichocki JA, Smith GJ, Mendoza R, Buckpitt AR, Van Winkle LS, Morris JB (2014) Sex differences in the acute nasal antioxidant/antielectrophilic response of the rat to inhaled naphthalene. Toxicol Sci 139(1):234–244. doi:10.1093/toxsci/kfu031 Nie X, Lowe DW, Rollins LG, Bentzley J, Fraser JL, Martin R, Singh I, Jenkins D (2016) Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia. Neurosci Res 108:24–33. doi:10.1016/j.neures.2016.01.008