Tái nhiễm SARS-CoV-2 nặng với biến thể Delta sau khi hồi phục từ nhiễm trùng đột phá do biến thể Alpha ở một nhân viên y tế đã tiêm chủng đầy đủ
Tóm tắt
Từ khóa
#COVID-19 #SARS-CoV-2 #tiêm chủng #tái nhiễm #biến thể Alpha #biến thể Delta #miễn dịch #giải trình tự gen toàn bộTài liệu tham khảo
The Economist2021
Noh, 2021, Danuser G. Estimation of the fraction of COVID-19 infected people in US states and countries worldwide, PLoS ONE., 16, e0246772, 10.1371/journal.pone.0246772
Investigation of novel SARS-COV-2 variant of concern ChandM HopkinS DabreraG AchisonC BarclayW FergusonN 2020
Dhar, 2021, Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India, medRxiv [preprint], 10.1101/2021.06.02.21258076
Harris, 2021, Effect of vaccination on household transmission of SARS-CoV-2 in England, N Engl J Med., 10.1056/NEJMc2107717
Katoh, 2013, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol Biol Evol., 30, 772, 10.1093/molbev/mst010
Chernomor, 2016, Terrace aware data structure for phylogenomic inference from supermatrices, Syst Biol., 65, 997, 10.1093/sysbio/syw037
RambautA FigTree v1.3.1. Institute of evolutionary biology, University of Edinburgh, Edinburgh2010
Hadfield, 2018, Nextstrain: real-time tracking of pathogen evolution, Bioinformatics., 34, 4121, 10.1093/bioinformatics/bty407
Breakthrough Case Investigations and Reporting | CDC2021
Kustin, 2021, Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals, Nat Med, 1, 10.1101/2021.04.06.21254882
SARS-CoV-2 variants of concern and variants under investigation in England Technical briefing 162021
Mlcochova, 2021, SARS-CoV-2 B.1.617.2 Delta variant emergence and vaccine breakthrough, bioRxiv [preprint]., 10.21203/rs.3.rs-637724/v1
Hall, 2021, SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN), Lancet., 397, 1459, 10.1016/S0140-6736(21)00675-9
Hansen, 2021, Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study, Lancet., 397, 1204, 10.1016/S0140-6736(21)00575-4
EnglPH New national surveillance of possible COVID-19 reinfection, published by PHE. GOVUK
Qureshi, 2021, Reinfection with SARS-CoV-2 in patients undergoing serial laboratory testing, Clin Infect Dis., 10.1093/cid/ciab345
Shastri, 2021, Clinical, serological, whole genome sequence analyses to confirm SARS-CoV-2 reinfection in patients from Mumbai, India, Front Med., 8, 631769, 10.3389/fmed.2021.631769
Tomic, 2021, Divergent trajectories of antiviral memory after SARS-Cov-2 infection, 10.21203/rs.3.rs-612205/v1.
Petersen, 2020, Lack of antibodies to SARS-CoV-2 in a large cohort of previously infected persons, Clin Infect Dis., 10.1093/cid/ciaa1685
Health DepartmentsCenters for Disease Control and Prevention.2020
Karan, 2021, For the CDC prevention epicenters program. The risk of SARS-CoV-2 transmission from patients with undiagnosed Covid-19 to roommates in a large academic medical center, Clinical Infectious Dis., 10.1093/cid/ciab564
Barnes, 2020, SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies, Nature., 588, 682, 10.1038/s41586-020-2852-1
Weissman, 2021, D614G spike mutation increases SARS CoV-2 susceptibility to neutralization, Cell Host Microbe., 29, 23, 10.1016/j.chom.2020.11.012
Tchesnokova, 2021, Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-Cov-2 variants, bioRxiv [preprint]., 10.1101/2021.02.22.432189
Cherian, 2021, Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India, bioRxiv [preprint]., 10.1101/2021.04.22.440932
Xiao, 2021, SARS-CoV-2 variant B.1.1.7 caused HLA-A2+ CD8+ T cell epitope mutations for impaired cellular immune response, bioRxiv [preprint]., 10.1101/2021.03.28.437363
Guo, 2020, CD8 T cell epitope generation toward the continually mutating SARS-CoV-2 spike protein in genetically diverse human population: Implications for disease control and prevention, PLoS ONE., 15, e0239566, 10.1371/journal.pone.0239566
Antony, 2021, Role of SARS-CoV-2 and ACE2 variations in COVID-19, Biomedical J., 10.1016/j.bj.2021.04.006
McCallum, 2021, N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2, Cell., 184, 2332, 10.1016/j.cell.2021.03.028
Di Giacomo, 2021, Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike mutation T478K, J Med Virol., 93, 5638, 10.1101/2021.03.28.437369
Liu, 2021, The N501Y spike substitution enhances SARS-CoV-2 transmission, bioRxiv [preprint]., 10.1101/2021.03.08.434499
Agerer, 2020, SARS-CoV-2 escapes CD8 T cell surveillance via mutations in MHC-I restricted epitopes, bioRxiv [preprint]., 10.1101/2020.12.18.423507
Yuan, 2020, The influence of major S protein mutations of SARS-CoV-2 on the potential B cell epitopes, bioRxiv [preprint]., 10.1101/2020.08.24.264895
Saito, 2021, SARS-CoV-2 spike P681R mutation enhances and accelerates viral fusion, bioRxiv [preprint]., 10.1101/2021.06.17.448820