Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các thước đo rủi ro theo tập giá trị như các bao hàm và phương trình ngẫu nhiên lùi
Tóm tắt
Các thước đo rủi ro động vô hướng cho các vị trí đơn biến trong thời gian liên tục thường được biểu diễn qua các phương trình vi phân ngẫu nhiên lùi. Trong bối cảnh đa biến, các thước đo rủi ro động đã được định nghĩa và nghiên cứu như các họ chức năng theo tập giá trị trong tài liệu gần đây. Có hai khả năng mở rộng các phương trình vi phân ngẫu nhiên lùi vô hướng cho khung theo tập giá trị: (1) các bao hàm vi phân ngẫu nhiên lùi, đánh giá động lực rủi ro trên các bộ chọn phân bổ vốn chấp nhận được; hoặc (2) các phương trình vi phân ngẫu nhiên lùi theo tập giá trị, đánh giá động lực rủi ro trên toàn bộ tập hợp các phân bổ vốn chấp nhận được như một đối tượng duy nhất. Trong công trình này, bối cảnh thời gian rời rạc được nghiên cứu với các bao hàm khác nhau và các phương trình khác nhau nhằm cung cấp cái nhìn cho các biểu diễn vi phân đó cho các thước đo rủi ro động theo tập giá trị trong thời gian liên tục.
Từ khóa
#thước đo rủi ro động #phương trình vi phân ngẫu nhiên #bao hàm ngẫu nhiên lùi #tập giá trịTài liệu tham khảo
Akahori, J., Amaba, T., Okuma, K.: A discrete-time Clark–Ocone formula and its application to an error analysis. J. Theor. Probab. 30, 932–960 (2017)
Ararat, Ç., Hamel, A.H., Rudloff, B.: Set-valued shortfall and divergence risk measures. Int. J. Theor. Appl. Finance 20, 1750026 (2017)
Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)
Barrieu, P., El Karoui, N.: Optimal derivative design under dynamic risk measures. In: Ying, G., Zhang, Q. (eds.) Mathematics of Finance, pp. 13–26. Am. Math. Soc., Providence (2004)
Barrieu, P., El Karoui, N.: Pricing, hedging and optimally designing derivatives via minimization of risk measures. In: Carmona, R. (ed.) Indifference Pricing: Theory and Applications, pp. 77–146. Princeton University Press, Princeton (2009)
Ben Tahar, I., Lépinette, E.: Vector-valued coherent risk measure processes. Int. J. Theor. Appl. Finance 17, 1450011–1–28 (2014)
Biagini, F., Fouque, J.P., Frittelli, M., Meyer-Brandis, T.: A unified approach to systemic risk measures via acceptance sets. Math. Finance 9, 329–367 (2019)
Bion-Nadal, J.: Conditional risk measures and robust representation of convex risk measures. Ecole Polytechnique CMAP preprint no. 557 (2004). Available online at http://www.cmap.polytechnique.fr/preprint/repository/557.pdf
Cascos, I., Molchanov, I.: Multivariate risk measures: a constructive approach based on selections. Math. Finance 26, 867–900 (2016)
Chen, Y., Hu, Y.: Time consistency for set-valued dynamic risk measures for bounded discrete-time processes. Math. Financ. Econ. 12, 305–333 (2018)
Cheridito, P., Delbaen, F., Kupper, M.: Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab. 11, 57–106 (2006)
Cheridito, P., Horst, U., Kupper, M., Pirvu, T.A.: Equilibrium pricing in incomplete markets under translation invariant preferences. Math. Oper. Res. 41, 174–195 (2016)
Crespi, G.P., Hamel, A.H., Schrage, C.: A Minty variational principle for set optimization. J. Math. Anal. Appl. 423, 770–796 (2015)
Detlefsen, K., Scandolo, G.: Conditional and dynamic convex risk measures. Finance Stoch. 9, 539–561 (2005)
Eisenberg, L., Noe, T.H.: Systemic risk in financial systems. Manag. Sci. 47, 236–249 (2001)
Feinstein, Z., Rudloff, B.: Time consistency of dynamic risk measures in markets with transaction costs. Quant. Finance 13, 1473–1489 (2013)
Feinstein, Z., Rudloff, B.: Multi-portfolio time consistency for set-valued convex and coherent risk measures. Finance Stoch. 19, 67–107 (2015)
Feinstein, Z., Rudloff, B.: A comparison of techniques for dynamic multivariate risk measures. In: Hamel, A.H., et al. (eds.) Set Optimization and Applications – the State of the Art. From Set Relations to Set-valued Risk Measures, pp. 3–41. Springer, Berlin (2015)
Feinstein, Z., Rudloff, B.: A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle. J. Glob. Optim. 68, 47–69 (2017)
Feinstein, Z., Rudloff, B.: A supermartingale relation for multivariate risk measures. Quant. Finance 18, 1971–1990 (2018)
Feinstein, Z., Rudloff, B.: Scalar multivariate risk measures with a single eligible asset. Working paper (2019). Available online at http://arxiv.org/abs/1807.10694
Feinstein, Z., Rudloff, B.: Time consistency for scalar multivariate risk measures. Working paper (2020). Available online at http://arxiv.org/abs/1810.04978
Feinstein, Z., Rudloff, B., Weber, S.: Measures of systemic risk. SIAM J. Financ. Math. 8, 672–708 (2017)
Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6, 429–447 (2002)
Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. de Gruyter, Berlin (2011)
Grépat, J., Kabanov, Yu.: On a multi-asset version of the Kusuoka limit theorem of option superreplication under transaction costs. Finance Stoch. 25, 167–187 (2021)
Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5, 1–28 (2011)
Hamel, A.H., Schrage, C.: Directional derivatives and subdifferential of set-valued convex functions. Pac. J. Optim. 10, 667–689 (2014)
Hamel, A.H., Wang, S.Q.: A set optimization approach to utility maximization under transaction costs. Decis. Econ. Finance 40, 257–275 (2017)
He, H.: Convergence from discrete to continuous time contingent claim prices. Rev. Financ. Stud. 3, 523–546 (1990)
Jacod, J., Méléard, S., Protter, P.: Explicit form and robustness of martingale representations. Ann. Probab. 28, 1747–1780 (2000)
Jiang, L.: Convexity, translation invariance and subadditivity for \(g\)-expectations and related risk measures. Ann. Appl. Probab. 18, 245–258 (2008)
Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8, 531–552 (2004)
Karnam, C., Ma, J., Zhang, J.: Dynamic approaches for some time-inconsistent optimization problems. Ann. Appl. Probab. 27, 3435–3477 (2017)
Kisielewicz, M.: Backward stochastic differential inclusions. Dyn. Syst. Appl. 16, 121–140 (2007)
Kisielewicz, M.: Weak compactness of weak solutions to backward stochastic differential inclusions. Dyn. Syst. Appl. 17, 351–370 (2008)
Kisielewicz, M.: Stochastic Differential Inclusions and Applications. Springer, New York (2013)
Kováčová, G., Rudloff, B.: Time consistency of the mean-risk problem. Oper. Res., forthcoming (2020). Available online at https://arxiv.org/abs/1806.10981
Lépinette, E., Molchanov, I.: Conditional cores and conditional convex hulls of random sets. J. Math. Anal. Appl. 478, 368–392 (2019)
Lépinette, E., Molchanov, I.: Risk arbitrage and hedging to acceptability under transaction costs. Finance Stoch. 25, 101–132 (2021)
Löhne, A., Rudloff, B.: An algorithm for calculating the set of superhedging portfolios in markets with transaction costs. Int. J. Theor. Appl. Finance 17, 1450012 (2014)
Molchanov, I.: Theory of Random Sets, 2nd edn. Springer, London (2017)
Molchanov, I., Mühlemann, A.: Nonlinear expectations of random sets. Finance Stoch. 25, 5–41 (2021)
Peng, S.: Dynamical evaluations. C. R. Acad. Sci. Paris, Ser. I 339, 585–589 (2004)
Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2005), version 2.1
Riedel, F.: Dynamic coherent risk measures. Stoch. Process. Appl. 112, 185–200 (2004)
Rosazza Gianin, E.: Risk measures via \(g\)-expectations. Insur. Math. Econ. 39, 19–34 (2006)
Ruszczyński, A., Shapiro, A.: Conditional risk mappings. Math. Oper. Res. 31, 544–561 (2006)
Stadje, M.: Extending dynamic convex risk measures from discrete time to continuous time: a convergence approach. Insur. Math. Econ. 47, 391–404 (2010)
Xu, Y.: Multidimensional dynamic risk measure via conditional \(g\)-expectation. Math. Finance 26, 638–673 (2016)