Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hồ sơ chuyển hóa huyết thanh như một phương tiện để phân biệt giai đoạn ung thư đại trực tràng
Tóm tắt
Hiện nay, ung thư đại trực tràng (CRC) được phân giai đoạn trước phẫu thuật bằng các xét nghiệm hình ảnh và sau phẫu thuật bằng đánh giá bệnh lý của các mẫu phẫu thuật có sẵn. Tuy nhiên, các phương pháp phân giai đoạn hiện nay không xác định chính xác các di căn tiềm ẩn. Điều này ảnh hưởng trực tiếp đến quản lý lâm sàng. Việc phát hiện sớm các di căn giới hạn ở gan có thể cho phép cắt bỏ phẫu thuật, trong khi bệnh lan tỏa hơn có thể được điều trị tốt nhất bằng hóa trị liệu giảm nhẹ. Huyết thanh của 103 bệnh nhân mắc adenocarcinoma đại trực tràng được điều trị tại cùng một trung tâm ung thư hạng ba đã được phân tích bằng phương pháp cộng hưởng từ hạt nhân proton (1H NMR) và sắc kí khí - phổ khối (GC-MS). Profiling chuyển hóa đã được thực hiện bằng cả nhận dạng mẫu có giám sát và phân tích phân biệt bình phương tối thiểu phần phụ (O-PLS-DA) của các chuyển hóa đáng kể nhất, cho phép so sánh phổ mẫu tổng thể giữa các nhóm. Hồ sơ chuyển hóa từ mỗi nền tảng đã được so sánh giữa các nhóm sau: CRC tại chỗ và khu vực (N = 42); di căn chỉ ở gan (N = 45); và di căn ngoài gan (N = 25). Hồ sơ chuyển hóa huyết thanh liên quan đến CRC tại chỗ và khu vực khác biệt so với di căn chỉ ở gan, dựa trên phổ 1H NMR (P = 5.10 × 10-7) và GC-MS (P = 1.79 × 10-7). Tương tự, hồ sơ chuyển hóa huyết thanh cũng khác biệt đáng kể giữa bệnh nhân có di căn chỉ ở gan và di căn ngoài gan. Sự thay đổi trong hồ sơ chuyển hóa được thể hiện rõ rệt nhất trên GC-MS (P = 4.75 × 10-5). Trong CRC, hồ sơ chuyển hóa huyết thanh thay đổi đáng kể với sự di căn, và vị trí bệnh dường như cũng ảnh hưởng đến mô thức của các chuyển hóa tuần hoàn. Quan sát mới này có thể có giá trị lâm sàng trong việc nâng cao độ chính xác phân giai đoạn và lựa chọn bệnh nhân cho quản lý phẫu thuật hoặc y khoa. Cần thực hiện thêm các nghiên cứu để xác định độ nhạy của phương pháp này trong việc phát hiện bệnh di căn tinh vi hoặc tiềm ẩn.
Từ khóa
#ung thư đại trực tràng #di căn #hồ sơ chuyển hóa huyết thanh #phân giai đoạn #hóa trị liệuTài liệu tham khảo
Pawlik TM, Scoggins CR, Zorzi D, Abdalla EK, Andres A, Eng C, Curley SA, Loyer EM, Muratore A, Mentha G, Capussotti L, Vauthey JN: Effect of surgical margin status on survival and site of recurrence after hepatic resection for colorectal metastases. Ann Surg. 2005, 241: 715-10.1097/01.sla.0000160703.75808.7d.
Bathe OF, Ernst S, Sutherland FR, Dixon E, Butts C, Bigam D, Holland D, Porter GA, Koppel J, Dowden S: A phase II experience with neoadjuvant irinotecan (CPT-11), 5-fluorouracil (5-FU) and leucovorin (LV) for colorectal liver metastases. BMC Cancer. 2009, 9: 156-10.1186/1471-2407-9-156.
Pawlik TM, Schulick RD, Choti MA: Expanding criteria for resectability of colorectal liver metastases. Oncologist. 2008, 13: 51-64. 10.1634/theoncologist.2007-0142.
Shah SA, Bromberg R, Coates A, Rempel E, Simunovic M, Gallinger S: Survival after liver resection for metastatic colorectal carcinoma in a large population. J Am Coll Surg. 2007, 205: 676-10.1016/j.jamcollsurg.2007.06.283.
Bathe OF, Shaykhutdinov R, Kopciuk K, Weljie AM, McKay A, Sutherland FR, Dixon E, Dunse N, Sotiropoulos D, Vogel HJ: Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol Biomarkers Prev. 2011, 20: 140-10.1158/1055-9965.EPI-10-0712.
Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, et al: HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37: D603-610. 10.1093/nar/gkn810.
Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM: Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem. 2006, 78: 4430-10.1021/ac060209g.
Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959, 37: 911-917. 10.1139/o59-099.
Hummel J, Selbig J, Walther D, Kopka J: The Golm Metabolome Database: a database for GC-MS based metabolite profiling. Topics Curr Genet. 2007, 18: 75-95.
Stein S: Chemical substructure identification by mass spectral library searching. J Am Soc Mass Spectrom. 1995, 6: 644-655.
Weljie AM, Dowlatabadi R, Miller BJ, Vogel HJ, Jirik FR: An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. J Proteome Res. 2007, 6: 3456-3464. 10.1021/pr070123j.
Xia J, Psychogios N, Young N, Wishart DS: MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37: W652-W660. 10.1093/nar/gkp356.
Ingenuity Systems Pathways Analysis. [http://www.ingenuity.com/]
Turowski GA, Rashid Z, Hong F, Madri JA, Basson MD: Glutamine modulates phenotype and stimulates proliferation in human colon cancer cell lines. Cancer Res. 1994, 54: 5974-5980.
Wasa M, Bode BP, Abcouwer SF, Collins CL, Tanabe KK, Souba WW: Glutamine as a regulator of DNA and protein biosynthesis in human solid tumor cell lines. Ann Surg. 1996, 224: 189-197. 10.1097/00000658-199608000-00012.
Lobo C, Ruiz-Bellido MA, Aledo JC, Marquez J, Nunez De Castro I, Alonso FJ: Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumour cells. Biochem J. 2000, 348: 257-261. 10.1042/0264-6021:3480257.
Sawhney RS, Cookson MM, Omar Y, Hauser J, Brattain MG: Integrin alpha2-mediated ERK and calpain activation play a critical role in cell adhesion and motility via focal adhesion kinase signaling: identification of a novel signaling pathway. J Biol Chem. 2006, 281: 8497-8510. 10.1074/jbc.M600787200.
Wang S, Basson MD: Akt directly regulates focal adhesion kinase through association and serine phosphorylation: implication for pressure-induced colon cancer metastasis. Am J Physiol Cell Physiol. 2011, 300: C657-670. 10.1152/ajpcell.00377.2010.
Sancho E, Batlle E, Clevers H: Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol. 2004, 20: 695-723. 10.1146/annurev.cellbio.20.010403.092805.
Scartozzi M, Bearzi I, Berardi R, Mandolesi A, Pierantoni C, Cascinu S: Epidermal growth factor receptor (EGFR) downstream signaling pathway in primary colorectal tumours and related metastatic sites: optimising EGFR-targeted treatment options. Br J Cancer. 2007, 97: 92-97. 10.1038/sj.bjc.6603847.
Scartozzi M, Bearzi I, Pierantoni C, Mandolesi A, Loupakis F, Zaniboni A, Catalano V, Quadri A, Zorzi F, Berardi R, Biscotti T, Labianca R, Falcone A, Cascinu S: Nuclear factor-kB tumor expression predicts response and survival in irinotecan-refractory metastatic colorectal cancer treated with cetuximab-irinotecan therapy. J Clin Oncol. 2007, 25: 3930-3935. 10.1200/JCO.2007.11.5022.
Messersmith W, Oppenheimer D, Peralba J, Sebastiani V, Amador M, Jimeno A, Embuscado E, Hidalgo M, Iacobuzio-Donahue C: Assessment of epidermal growth factor receptor (EGFR) signaling in paired colorectal cancer and normal colon tissue samples using computer-aided immunohistochemical analysis. Cancer Biol Ther. 2005, 4: 1381-1386. 10.4161/cbt.4.12.2287.
Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O: Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011, 71: 2550-2560. 10.1158/0008-5472.CAN-10-2828.
Sakamoto K, Maeda S: Targeting NF-kappaB for colorectal cancer. Expert Opin Ther Targets. 2010, 14: 593-601. 10.1517/14728221003769903.
Iwakura Y, Ishigame H, Saijo S, Nakae S: Functional specialization of interleukin-17 family members. Immunity. 2011, 34: 149-162. 10.1016/j.immuni.2011.02.012.
Yamaguchi Y, Fujio K, Shoda H, Okamoto A, Tsuno NH, Takahashi K, Yamamoto K: IL-17B and IL-17C are associated with TNF-α production and contribute to the exacerbation of inflammatory arthritis. J Immunology. 2007, 179: 7128-7136.
Zhou Q, Peng RQ, Wu XJ, Xia Q, Hou JH, Ding Y, Zhou QM, Zhang X, Pang ZZ, Wan DS, Zeng YX, Zhang XS: The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J Transl Med. 2010, 8: 13-10.1186/1479-5876-8-13.
Giusca SE, Zugun FE, Tarcoveanu E, Carasevici E, Amalinei C, Caruntu ID: Immunohistochemical study of colorectal cancer liver metastases: the immune/inflammatory infiltrate. Rom J Morphol Embryol. 2010, 51: 73-79.
Desch CE, Benson AB, Somerfield MR, Flynn PJ, Krause C, Loprinzi CL, Minsky BD, Pfister DG, Virgo KS, Petrelli NJ: Colorectal cancer surveillance: 2005 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol. 2005, 23: 8512-8519. 10.1200/JCO.2005.04.0063.
Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, Somerfield MR, Hayes DF, Bast RC: ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006, 24: 5313-5327. 10.1200/JCO.2006.08.2644.
Kell DB: Metabolomic biomarkers: search, discovery and validation. Expert Rev Mol Diagn. 2007, 7: 329-10.1586/14737159.7.4.329.
Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, Ni Y, Zhao A, Xu LX, Cai S, Jia W: Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res. 2009, 8: 4844-10.1021/pr9004162.
Kondo Y, Nishiumi S, Shinohara M, Hatano N, Ikeda A, Yoshie T, Kobayashi T, Shiomi Y, Irino Y, Takenawa T, Azuma T, Yoshida M: Serum fatty acid profiling of colorectal cancer by gas chromatography/mass spectrometry. Biomark Med. 2011, 5: 451-460. 10.2217/bmm.11.41.
Ludwig C, Ward DG, Martin A, Viant MR, Ismail T, Johnson PJ, Wakelam MJ, Gunther UL: Fast targeted multidimensional NMR metabolomics of colorectal cancer. Magn Reson Chem. 2009, 47 (Suppl 1): S68-73.
Bertini I, Cacciatore S, Jensen BV, Schou JV, Johansen JS, Kruhoffer M, Luchinat C, Nielsen DL, Turano P: Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res. 2012, 72: 356-364. 10.1158/0008-5472.CAN-11-1543.