Mức độ Albumin Biến Đổi Do Thiếu Máu, Hoạt Tính Myeloperoxidase và Số Lượng Tế Bào Máu Mononuclear Ngoại Vi Trong Rối Loạn Phổ Tự Kỷ (ASD)

Journal of Autism and Developmental Disorders - Tập 51 - Trang 2511-2517 - 2020
Mehmet Fatih Ceylan1, Selma Tural Hesapcioglu1, Cansu Pınar Yavas1, Almila Senat2, Ozcan Erel2
1Faculty of Medicine, Child and Adolescent Psychiatry Department, Ankara Yildirim Beyazit University, Ankara, Turkey
2Faculty of Medicine, Clinical Biochemistry Department, Ankara Yildirim Beyazit University, Ankara, Turkey

Tóm tắt

Các yếu tố di truyền, thần kinh sinh học, hóa sinh thần kinh, môi trường và các tương tác của chúng góp phần vào các kiểu hình tự kỷ. Máu từ 48 bệnh nhân được chẩn đoán mắc rối loạn phổ tự kỷ (ASD) (độ tuổi: 4–17) và 38 bệnh nhân chứng lành mạnh cùng độ tuổi và giới tính đã được phân tích để xác định số lượng bạch cầu trung tính, bạch cầu lympho, bạch cầu đơn nhân, mức albumin, mức độ Albumin Biến Đổi Do Thiếu Máu (IMA) trong huyết thanh và hoạt tính myeloperoxidase. Mức độ IMA trong huyết thanh, hoạt tính myeloperoxidase và số lượng tế bào đơn nhân máu ngoại vi cao hơn một cách có ý nghĩa ở các trường hợp ASD so với các đối tượng chứng. Không có sự khác biệt có ý nghĩa về mức độ albumin giữa nhóm bệnh nhân và nhóm chứng. Những kết quả này cho thấy rằng hệ thống miễn dịch, stress oxy hóa và hoạt tính myeloperoxidase có thể được kích hoạt ở ASD. Có lợi ích lâm sàng từ việc phát hiện sớm ASD thông qua hoạt tính myeloperoxidase, mức độ IMA và số lượng bạch cầu đơn nhân.

Từ khóa

#Rối loạn phổ tự kỷ #albumin biến đổi do thiếu máu #hoạt tính myeloperoxidase #tế bào máu đơn nhân ngoại vi #hệ thống miễn dịch

Tài liệu tham khảo

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing. Bar-Or, D., Lau, E., & Winkler, J. V. (2000). A novel assay for cobalt-albumin binding and its potential as a marker for a myocardial ischemia-a preliminary report. The Journal of emergency medicine, 19(4), 311–315. Bjørklund, G., Meguid, N. A., El-Bana, M. A., et al. (2020). Oxidative stress in autism spectrum disorder. Molecular Neurobiology, 57(5), 2314–2332. Bradley, P. P., Priebat, D. A., Christensen, R. D., & Rothstein, G. (1982). Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. The Journal of Investigative Dermatology, 78(3), 206–209. Ceylan, M. F., Sener, S., Bayraktar, A. C., & Kavutcu, M. (2012). Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry and Clinical Neurosciences, 66(3), 220–226. Ceylan, M. F., Uneri, O. S., Guney, E., et al. (2014). Increased levels of serum neopterin in attention deficit/hyperactivity disorder (ADHD). Journal of Neuroimmunology, 273(1–2), 111–114. Chess, S. (1971). Autism in children with congenital rubella. Journal of autism and childhood schizophrenia, 1(1), 33–47. Christensen, D. L., Bilder, D. A., Zahorodny, W., Pettygrove, S., Durkin, M. S., Fitzgerald, R. T., et al. (2016). Prevalence and characteristics of autism spectrum disorder among 4-Year-old children in the autism and developmental disabilities monitoring network. Journal of Developmental and Behavioral Pediatrics: JDBP, 37(1), 1–8. Cline, M. J. (1978). Monocytes, macrophages, and their diseases in man. The Journal of Investigative Dermatology, 71(1), 56–58. Delion, S., Chalon, S., Hérault, J., Guilloteau, D., Besnard, J. C., & Durand, G. (1994). Chronic dietary alpha-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. The Journal of Nutrition, 124(12), 2466–2476. Desmond, M. M., Montgomery, J. R., Melnick, J. L., Cochran, G. G., & Verniaud, W. (1969). Congenital rubella encephalitis. Effects on growth and early development. American Journal of Diseases of Children, 118(1), 30–31. Dogan, D., Ocal, N., Aydogan, M., Tasci, C., Arslan, Y., Tapan, S., et al. (2016). Assessment of the role of serum ischemia-modified albumin in obstructive sleep apnea in comparison with interleukin-6. Postgraduate Medicine, 128(6), 603–608. Ecker, C., Bookheimer, S. Y., & Murphy, D. G. (2015). Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan. The Lancet Neurology, 14(11), 1121–1134. Ellidag, H. Y., Bulbuller, N., Eren, E., et al. (2013). Ischemia-modified albumin: Could it be a new oxidative stress biomarker for colorectal carcinoma? Gut Liver, 7(6), 675–680. Goines, P. E., & Ashwood, P. (2013). Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicology and Teratology, 36, 67–81. Kim, Y. S., Leventhal, B. L., Koh, Y. J., Fombonne, E., Laska, E., Lim, E. C., et al. (2011). Prevalence of autism spectrum disorders in a total population sample. American Journal of Psychiatry, 168(9), 904–912. Kriisa, K., Haring, L., Vasar, E., et al. (2016). Antipsychotic treatment reduces indices of oxidative stress in first-episode psychosis patients. Oxidative Medicine and Cellular Longevity, 2016, 9616593. Matta, S. M., Hill-Yardin, E. L., & Crack, P. J. (2019). The influence of neuroinflammation in Autism Spectrum Disorder. Brain, behavior, and immunity. Meltzer, A., & Van de Water, J. (2017). The role of the immune system in autism spectrum disorder. Neuropsychopharmacology, 42(1), 284–298. Mandic-Maravic, V., Pljesa-Ercegovac, M., Mitkovic-Voncina, M., et al. (2017). Impaired redox control in autism spectrum disorders: Could it be the X in GxE? Current Psychiatry Reports, 19(8), 52. Menezo, Y. J., Elder, K., & Dale, B. (2015). Link between increased prevalence of autism spectrum disorder syndromes and oxidative stress, DNA methylation, and imprinting: The impact of the environment. JAMA Pediatrics, 169(11), 1066–1067. Halliwell, B. (2006). Oxidative stress and neurodegeneration: Where are we now? Journal of Neurochemistry, 97(6), 1634–1658. Khan Amjad, A., Alsahli, M. A., & Rahmani, A. H. (2018). Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Medical sciences. https://doi.org/10.3390/medsci6020033. Nunez, E. A. (1993). Preface—fatty acids and cell signalling. Prostaglandins Leukot Essent Fatty Acids, 48(1), 1–4. Oberman, L. M., Ifert-Miller, F., Najib, U., Bashir, S., Gonzalez-Heydrich, J., Picker, J., et al. (2016). Abnormal mechanisms of plasticity and metaplasticity in autism spectrum disorders and fragile X syndrome. Journal of Child and Adolescent Psychopharmacology, 26(7), 617–624. Ohja, K., Gozal, E., Fahnestock, M., et al. (2018). Neuroimmunologic and neurotrophic interactions in autism spectrum disorders: Relationship to neuroinflammation. Neuromolecular Medicine, 20(2), 161–173. Pangrazzi, L., Balasco, L., & Bozzi, Y. (2020). Oxidative stress and immune system dysfunction in autism spectrum disorders. International Journal of Molecular Sciences, 21(9), 3293. Rossignol, D. A., & Frye, R. E. (2012). A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction, and environmental toxicant exposures. Molecular Psychiatry, 17(4), 389–401. Russo, A. J., Krigsman, A., Jepson, B., & Wakefield, A. (2009). Low serum myeloperoxidase in autistic children with gastrointestinal disease. Clinical and Experimental Gastroenterology, 2, 85. Schaefer, G. B., Mendelsohn, N. J., Practice, P., & Committee, G. (2013). Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genetics in Medicine, 15(5), 399–407. Schopler, E., Reichler, R. J., DeVellis, R. F., & Daly, K. (1980). Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). Journal of autism and developmental disorders. Selek, S., Altindag, A., Saracoglu, G., & Aksoy, N. (2015). Oxidative markers of myeloperoxidase and catalase and their diagnostic performance in bipolar disorder. Journal of Affective Disorders, 181, 92–95. Sucuoglu, B., Oktem, F., & Gokler, B. (1996). Otistik cocukların degerlendirilmesinde kullanılan olceklere iliksin bir calısma. Psikiyatri Psikoloji Psikofarmakoloji, 4, 117–121. Sweeten, T. L., Posey, D. J., & McDougle, C. J. (2003). High blood monocyte counts and neopterin levels in children with autistic disorder. American Journal of Psychiatry, 160(9), 1691–1693. Tordjman, S., Somogyi, E., Coulon, N., Kermarrec, S., Cohen, D., Bronsard, G., et al. (2014). Gene× environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Frontiers in Psychiatry, 5, 53. Tunç, S., Atagün, M. İ., Neşelioğlu, S., Bilgin, Y. Y., Başbuğ, H. S., & Erel, Ö. (2019). Ischemia-modified albumin: A unique marker of global metabolic risk in schizophrenia and mood disorders. Psychiatry and Clinical Psychopharmacology, 29(2), 123–129. Tural Hesapcioglu, S., Kasak, M., Cıtak Kurt, A. N., & Ceylan, M. F. (2019). High monocyte level and low lymphocyte to monocyte ratio in autism spectrum disorders. International Journal of Developmental Disabilities, 65(2), 73–81. Vaccarino, V., Brennan, M. L., Miller, A. H., Bremner, J. D., Ritchie, J. C., Lindau, F., et al. (2008). Association of major depressive disorder with serum myeloperoxidase and other markers of inflammation: A twin study. Biological Psychiatry, 64(6), 476–483. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 57(1), 67–81. Volk, L., Chiu, S. L., Sharma, K., & Huganir, R. L. (2015). Glutamate synapses in human cognitive disorders. Annual Review of Neuroscience, 38, 127–149. Waligora, A., Waligóra, S., Kozarska, M., Damasiewicz-Bodzek, A., Gorczyca, P., & Tyrpien-Golder, K. (2019). Autism spectrum disorder (ASD)-biomarkers of oxidative stress and methylation and transsulfuration cycle. Psychiatria polska, 53, 771–88. Yirmiya, R., & Goshen, I. (2011). Immune modulation of learning, memory, neural plasticity, and neurogenesis. Brain, Behavior, and Immunity, 25(2), 181–213. Zhang, R., Brennan, M. L., Shen, Z., MacPherson, J. C., Schmitt, D., Molenda, C. E., et al. (2002). Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. Journal of Biological Chemistry, 277(48), 46116–46122.