Serious games for health: three steps forwards
Tóm tắt
Từ khóa
Tài liệu tham khảo
McCoy B. Digital distractions in the classroom: student classroom use of digital devices for non-class related purposes. J Media Edu. 2013;4(4):5e14.
Murphy M. Why games work and the science of learning. Report [Internet]. 2012. Available http://www.goodgamesbydesign.com/Files/WhyGamesWork_TheScienceOfLearning_CMurphy_2011.pdf . [Cited 12 Jan 2017]
Cook DA, Hamstra SJ, Brydges R, Zendejas B, Szostek JH, Wang AT, et al. Comparative effectiveness of instructional design features in simulation-based education: systematic review and meta-analysis. Med Teach. 2013;35:e867–98.
Greenwood CR, Horton BT, Utley CA. Academic engagement: current perspectives on research and practice. Sch Psychol Rev. 2002;31:328.
Eichenbaum A, Bavelier D, Green CS. Video games: play that can do serious good. Am J Play. 2014;7:50.
Prensky M. The motivation of gameplay: the real twenty-first century learning revolution. Horiz. 2002;10:5–11.
Klopfer E, Osterweil S, Salen K. Moving learning games forward. 2009.
Ryan RM, Deci EL. Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp Educ Psychol. 2000;25:54–67.
Wouters P, Van Nimwegen C, Van Oostendorp H, Van Der Spek ED. A meta-analysis of the cognitive and motivational effects of serious games. J Educ Psychol. 2013;105:249.
Kato PM, Cole SW, Bradlyn AS, Pollock BH. A video game improves behavioral outcomes in adolescents and young adults with cancer: a randomized trial. Pediatrics. 2008;122:e305–17.
Kron FW, Gjerde CL, Sen A, Fetters MD. Medical student attitudes toward video games and related new media technologies in medical education. BMC Med Educ. 2010;10:50.
Did neuroscience find the secrets of learning? [Internet]. Available from: http://www.paristechreview.com/2013/11/07/neuroscience-secret-learning/ . [cited 17 Jul 2015].
Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 2012;35:73–89.
Posner MI, Rothbart MK, Tang Y-Y. Enhancing attention through training. Curr Opin Behav Sci. 2015;4:1–5.
Baldi E, Bucherelli C. The inverted “u-shaped” dose-effect relationships in learning and memory: modulation of arousal and consolidation. Nonlinearity Biol Toxicol Med. 2005;3:9–21.
Ivory JD, Kalyanaraman S. The effects of technological advancement and violent content in video games on players’ feelings of presence, involvement, physiological arousal, and aggression. J Commun. 2007;57:532–55.
Grimshaw M. Sound and immersion in the first-person shooter. Int J Intell Games Simul. 2008;5:119–24.
Hamari J, Shernoff DJ, Rowe E, Coller B, Asbell-Clarke J, Edwards T. Challenging games help students learn: an empirical study on engagement, flow and immersion in game-based learning. Comput Hum Behav. 2016;54:170–9.
Csikszentmihalyi M. Flow: the psychology of optimal experience. New York: Harper Perennial; 1991.
Cowley B, Ravaja N. Learning in balance: using oscillatory EEG biomarkers of attention, motivation and vigilance to interpret game-based learning. Cogent Educ. 2014;1:962236.
Kirschner PA, Sweller J, Clark RE. Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educ Psychol. 2006;41:75–86.
Wouters P, Van Oostendorp H. A meta-analytic review of the role of instructional support in game-based learning. Comput Educ. 2013;60:412–25.
Murray JH. Hamlet on the holodeck: the future of narrative in cyberspace. Simon and Schuster. New York: The Free Press; 1997.
Jennett C, Cox AL, Cairns P, Dhoparee S, Epps A, Tijs T, et al. Measuring and defining the experience of immersion in games. Int J Hum Comput Stud. 2008;66:641–61.
Cheng M-T, Lin Y-W, She H-C, Kuo P-C. Is immersion of any value? Whether, and to what extent, game immersion experience during serious gaming affects science learning. Br J Educ Technol. 2016. doi: 10.1111/bjet.12386 .
Cheng M-T, She H-C, Annetta LA. Game immersion experience: its hierarchical structure and impact on game-based science learning. J Comput Assist Learn. 2015;31:232–53.
Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci. 2014;111:8410–5.
Davis D, O’Brien M, Freemantle N, Wolf FM, Mazmanian P, Taylor-Vaisey A. Impact of formal continuing medical education: do conferences, workshops, rounds, and other traditional continuing education activities change physician behavior or health care outcomes? JAMA. 1999;282:867–74.
Sitzmann T. A meta-analytic examination of the instructional effectiveness of computer-based simulation games. Pers Psychol. 2011;64:489–528.
Sutton RS. Learning to predict by the methods of temporal differences. Mach Learn. 1988;3:9–44.
O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38:329–37.
Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.
Pritchard RD, Jones SD, Roth PL, Stuebing KK, Ekeberg SE. Effects of group feedback, goal setting, and incentives on organizational productivity. J Appl Psychol. 1988;73:337–58.
Kluger AN, DeNisi A. The effects of feedback interventions on performance: a historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychol Bull. 1996;119:254–84.
Lameras P. Essential features of serious games design in higher education. Learning. 2015;4:5.
Katz B, Jaeggi S, Buschkuehl M, Stegman A, Shah P. Differential effect of motivational features on training improvements in school-based cognitive training. Front Hum Neurosci. 2014;8:242.
McGaugh JL. The perseveration-consolidation hypothesis: Mueller and Pilzecker, 1900. Brain Res Bull. 1999;50:445–6.
Froyen DJW, Bonte ML, van Atteveldt N, Blomert L. The long road to automation: neurocognitive development of letter–speech sound processing. J Cogn Neurosci. 2008;21:567–80.
Vlach HA, Sandhofer CM, Kornell N. The spacing effect in children’s memory and category induction. Cognition. 2008;109:163–7.
Goverover Y, Hillary FG, Chiaravalloti N, Arango-Lasprilla JC, DeLuca J. A functional application of the spacing effect to improve learning and memory in persons with multiple sclerosis. J Clin Exp Neuropsychol. 2009;31:513–22.
Wang Z, Zhou R, Shah P. Spaced cognitive training promotes training transfer. Front Hum Neurosci. 2014;8:217.
Kerfoot BP. Learning benefits of on-line spaced education persist for 2 years. J Urol. 2009;181:2671–3.
Kerfoot BP, Armstrong EG, O’Sullivan PN. Interactive spaced-education to teach the physical examination: a randomized controlled trial. J Gen Intern Med. 2008;23:973–8.
Kerfoot BP, Kearney MC, Connelly D, Ritchey ML. Interactive spaced education to assess and improve knowledge of clinical practice guidelines: a randomized controlled trial. Ann Surg. 2009;249:744–9.
Kerfoot BP, Baker H, Pangaro L, Agarwal K, Taffet G, Mechaber AJ, et al. An online spaced-education game to teach and assess medical students: a multi-institutional prospective trial. Acad Med J Assoc Am Med Coll. 2012;87:1443–9.
Greenhalgh T. How to read a paper: the basics of evidence-based medicine. Chichester: John Wiley & Sons. 2014.
Harden RM, Grant J, Buckley G, Hart IR. BEME guide no. 1: best evidence medical education. Med Teach. 1999;21:553–62.
Graafland M, Schraagen JM, Schijven MP. Systematic review of serious games for medical education and surgical skills training. Br J Surg. 2012;99:1322–30.
de Freitas S, Oliver M. How can exploratory learning with games and simulations within the curriculum be most effectively evaluated? Comput Educ. 2006;46:249–64.
Sawyer B. From cells to cell processors: the integration of health and video games. IEEE Comput Graph Appl. 2008;28:83–5.
Wattanasoontorn V, Boada I, García R, Sbert M. Serious games for health. Entertain Comput. 2013;4:231–47.
Graafland M, Dankbaar M, Mert A, Lagro J, De Wit-Zuurendonk L, Schuit S, et al. How to systematically assess serious games applied to health care. JMIR Serious Games [Internet]. 2014;2. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307812/ . [cited 23 Jul 2015].
Primack BA, Carroll MV, McNamara M, Klem ML, King B, Rich M, et al. Role of video games in improving health-related outcomes: a systematic review. Am J Prev Med. 2012;42:630–8.
Girard C, Ecalle J, Magnan A. Serious games as new educational tools: how effective are they? A meta-analysis of recent studies. J Comput Assist Learn. 2013;29:207–19.
Huss K, Winkelstein M, Nanda J, Naumann PL, Sloand ED, Huss RW. Computer game for inner-city children does not improve asthma outcomes. J Pediatr Health Care. 2003;17:72–8.
Mundell WC, Kennedy CC, Szostek JH, Cook DA. Simulation technology for resuscitation training: a systematic review and meta-analysis. Resuscitation. 2013;84:1174–83.
Ilgen JS, Sherbino J, Cook DA. Technology-enhanced simulation in emergency medicine: a systematic review and meta-analysis. Acad Emerg Med Off J Soc Acad Emerg Med. 2013;20:117–27.
Kirkpatrick DL. Evaluating training programs: the four levels. San Francisco; Emeryville: Berrett-Koehler; 1994.
Mosley C, Dewhurst C, Molloy S, Shaw BN. What is the impact of structured resuscitation training on healthcare practitioners, their clients and the wider service? A BEME systematic review: BEME guide no. 20. Med Teach. 2012;34:e349–85.