Serine phosphorylation regulates paxillin turnover during cell migration
Tóm tắt
Paxillin acts as an adaptor protein that localizes to focal adhesion. This protein is regulated during cell migration by phosphorylation on tyrosine, serine and threonine residues. Most of these phosphorylations have been implicated in the regulation of different steps of cell migration. The two major phosphorylation sites of paxillin in response to adhesion to an extracellular matrix are serines 188 and 190. However, the function of this phosphorylation event remains unknown. The purpose of this work was to determine the role of paxillin phosphorylation on residues S188 and S190 in the regulation of cell migration. We used NBT-II epithelial cells that can be induced to migrate when plated on collagen. To examine the role of paxillin serines 188/190 in cell migration, we constructed an EGFP-tagged paxillin mutant in which S188/S190 were mutated into unphosphorylatable alanine residues. We provide evidence that paxillin is regulated by proteasomal degradation following polyubiquitylation of the protein. During active cell migration on collagen, paxillin is protected from proteasome-dependent degradation. We demonstrate that phosphorylation of serines 188/190 is necessary for the protective effect of collagen. In an effort to understand the physiological relevance of paxillin protection from degradation, we show that cells expressing the paxillin S188/190A interfering mutant spread less, have reduced protrusive activity but migrate more actively. Our data demonstrate for the first time that serine-regulated degradation of paxillin plays a key role in the modulation of membrane dynamics and consequently, in the control of cell motility.
Tài liệu tham khảo
Lauffenburger DA, Horwitz AF: Cell migration: a physically integrated molecular process. Cell. 1996, 84 (3): 359-369. 10.1016/S0092-8674(00)81280-5.
Yamada KM, Pankov R, Cukierman E: Dimensions and dynamics in integrin function. Braz J Med Biol Res. 2003, 36 (8): 959-966. 10.1590/S0100-879X2003000800001.
Carragher NO, Frame MC: Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 2004, 14 (5): 241-249. 10.1016/j.tcb.2004.03.011.
Laukaitis CM, Webb DJ, Donais K, Horwitz AF: Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J Cell Biol. 2001, 153 (7): 1427-1440. 10.1083/jcb.153.7.1427.
Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B: Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci. 2003, 116 (Pt 22): 4605-4613. 10.1242/jcs.00792.
Beckerle MC, Burridge K, DeMartino GN, Croall DE: Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell. 1987, 51 (4): 569-577. 10.1016/0092-8674(87)90126-7.
Cooray P, Yuan Y, Schoenwaelder SM, Mitchell CA, Salem HH, Jackson SP: Focal adhesion kinase (pp125FAK) cleavage and regulation by calpain. Biochem J. 1996, 318 ( Pt 1): 41-47.
Dourdin N, Bhatt AK, Dutt P, Greer PA, Arthur JS, Elce JS, Huttenlocher A: Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J Biol Chem. 2001, 276 (51): 48382-48388.
Franco S, Perrin B, Huttenlocher A: Isoform specific function of calpain 2 in regulating membrane protrusion. Exp Cell Res. 2004, 299 (1): 179-187. 10.1016/j.yexcr.2004.05.021.
Yamaguchi R, Maki M, Hatanaka M, Sabe H: Unphosphorylated and tyrosine-phosphorylated forms of a focal adhesion protein, paxillin, are substrates for calpain II in vitro: implications for the possible involvement of calpain II in mitosis-specific degradation of paxillin. FEBS Lett. 1994, 356 (1): 114-116. 10.1016/0014-5793(94)01246-6.
Yamaguchi R, Mazaki Y, Hirota K, Hashimoto S, Sabe H: Mitosis specific serine phosphorylation and downregulation of one of the focal adhesion protein, paxillin. Oncogene. 1997, 15 (15): 1753-1761. 10.1038/sj.onc.1201345.
Liu E, Cote JF, Vuori K: Negative regulation of FAK signaling by SOCS proteins. Embo J. 2003, 22 (19): 5036-5046. 10.1093/emboj/cdg503.
Didier C, Broday L, Bhoumik A, Israeli S, Takahashi S, Nakayama K, Thomas SM, Turner CE, Henderson S, Sabe H, Ronai Z: RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol Cell Biol. 2003, 23 (15): 5331-5345. 10.1128/MCB.23.15.5331-5345.2003.
Shen Y, Schneider G, Cloutier JF, Veillette A, Schaller MD: Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. J Biol Chem. 1998, 273 (11): 6474-6481. 10.1074/jbc.273.11.6474.
Cote JF, Turner CE, Tremblay ML: Intact LIM 3 and LIM 4 domains of paxillin are required for the association to a novel polyproline region (Pro 2) of protein-tyrosine phosphatase-PEST. J Biol Chem. 1999, 274 (29): 20550-20560. 10.1074/jbc.274.29.20550.
Herreros L, Rodriguez-Fernandez JL, Brown MC, Alonso-Lebrero JL, Cabanas C, Sanchez-Madrid F, Longo N, Turner CE, Sanchez-Mateos P: Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton. J Biol Chem. 2000, 275 (34): 26436-26440. 10.1074/jbc.M003970200.
Brown MC, Perrotta JA, Turner CE: Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol. 1996, 135 (4): 1109-1123. 10.1083/jcb.135.4.1109.
Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS: Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J Cell Biol. 1999, 145 (4): 851-863. 10.1083/jcb.145.4.851.
Brown MC, Turner CE: Paxillin: adapting to change. Physiol Rev. 2004, 84 (4): 1315-1339. 10.1152/physrev.00002.2004.
Petit V, Boyer B, Lentz D, Turner CE, Thiery JP, Valles AM: Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. J Cell Biol. 2000, 148 (5): 957-970. 10.1083/jcb.148.5.957.
Bellis SL, Perrotta JA, Curtis MS, Turner CE: Adhesion of fibroblasts to fibronectin stimulates both serine and tyrosine phosphorylation of paxillin. Biochem J. 1997, 325 ( Pt 2): 375-381.
De Nichilo MO, Yamada KM: Integrin alpha v beta 5-dependent serine phosphorylation of paxillin in cultured human macrophages adherent to vitronectin. J Biol Chem. 1996, 271 (18): 11016-11022. 10.1074/jbc.271.18.11016.
Cai X, Li M, Vrana J, Schaller MD: Glycogen synthase kinase 3- and extracellular signal-regulated kinase-dependent phosphorylation of paxillin regulates cytoskeletal rearrangement. Mol Cell Biol. 2006, 26 (7): 2857-2868. 10.1128/MCB.26.7.2857-2868.2006.
Woodrow MA, Woods D, Cherwinski HM, Stokoe D, McMahon M: Ras-induced serine phosphorylation of the focal adhesion protein paxillin is mediated by the Raf-->MEK-->ERK pathway. Exp Cell Res. 2003, 287 (2): 325-338. 10.1016/S0014-4827(03)00122-8.
Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K: JNK phosphorylates paxillin and regulates cell migration. Nature. 2003, 424 (6945): 219-223. 10.1038/nature01745.
Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF: FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 2004, 6 (2): 154-161. 10.1038/ncb1094.
Tucker GC, Boyer B, Gavrilovic J, Emonard H, Thiery JP: Collagen-mediated dispersion of NBT-II rat bladder carcinoma cells. Cancer Res. 1990, 50 (1): 129-137.
Marijanovic Z, Ragimbeau J, Kumar KG, Fuchs SY, Pellegrini S: Tyk2 activity promotes the ligand-induced IFNAR1 proteolysis. Biochem J. 2006
Al-Fageeh M, Li Q, Dashwood WM, Myzak MC, Dashwood RH: Phosphorylation and ubiquitination of oncogenic mutants of beta-catenin containing substitutions at Asp32. Oncogene. 2004, 23 (28): 4839-4846. 10.1038/sj.onc.1207634.
Avraham E, Szargel R, Eyal A, Rott R, Engelender S: Glycogen synthase kinase 3beta modulates synphilin-1 ubiquitylation and cellular inclusion formation by SIAH: implications for proteasomal function and Lewy body formation. J Biol Chem. 2005, 280 (52): 42877-42886. 10.1074/jbc.M505608200.
Greenberg S, Chang P, Silverstein SC: Tyrosine phosphorylation of the gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J Biol Chem. 1994, 269 (5): 3897-3902.
Turner CE, Glenney JR, Burridge K: Paxillin: a new vinculin-binding protein present in focal adhesions. J Cell Biol. 1990, 111 (3): 1059-1068. 10.1083/jcb.111.3.1059.
Huang C, Borchers CH, Schaller MD, Jacobson K: Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. J Cell Biol. 2004, 164 (4): 593-602. 10.1083/jcb.200307081.
Brown MC, Perrotta JA, Turner CE: Serine and threonine phosphorylation of the paxillin LIM domains regulates paxillin focal adhesion localization and cell adhesion to fibronectin. Mol Biol Cell. 1998, 9 (7): 1803-1816.
Ishibe S, Joly D, Liu ZX, Cantley LG: Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell. 2004, 16 (2): 257-267. 10.1016/j.molcel.2004.10.006.
West KA, Zhang H, Brown MC, Nikolopoulos SN, Riedy MC, Horwitz AF, Turner CE: The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J Cell Biol. 2001, 154 (1): 161-176. 10.1083/jcb.200101039.
Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, Liddington RC, Adamson EA, Dunn GA, Critchley DR: Role of vinculin in regulating focal adhesion turnover. Eur J Cell Biol. 2006
Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB: Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell. 2002, 109 (4): 509-521. 10.1016/S0092-8674(02)00731-6.
Perrin BJ, Amann KJ, Huttenlocher A: Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration. Mol Biol Cell. 2006, 17 (1): 239-250. 10.1091/mbc.E05-06-0488.
Lokuta MA, Nuzzi PA, Huttenlocher A: Calpain regulates neutrophil chemotaxis. Proc Natl Acad Sci U S A. 2003, 100 (7): 4006-4011. 10.1073/pnas.0636533100.
Robles E, Huttenlocher A, Gomez TM: Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron. 2003, 38 (4): 597-609. 10.1016/S0896-6273(03)00260-5.
Alblas J, Ulfman L, Hordijk P, Koenderman L: Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell. 2001, 12 (7): 2137-2145.
Arthur WT, Burridge K: RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol Biol Cell. 2001, 12 (9): 2711-2720.
Worthylake RA, Burridge K: RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem. 2003, 278 (15): 13578-13584. 10.1074/jbc.M211584200.
Worthylake RA, Lemoine S, Watson JM, Burridge K: RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol. 2001, 154 (1): 147-160. 10.1083/jcb.200103048.
Boyer B, Tucker GC, Valles AM, Gavrilovic J, Thiery JP: Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line. Int J Cancer Suppl. 1989, 4: 69-75.
Edme N, Downward J, Thiery JP, Boyer B: Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. J Cell Sci. 2002, 115 (Pt 12): 2591-2601.
Cox EA, Sastry SK, Huttenlocher A: Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases. Mol Biol Cell. 2001, 12 (2): 265-277.