Sequential induction of mitotic catastrophe followed by apoptosis in human leukemia MOLT4 cells by imidazoacridinone C-1311
Tóm tắt
Imidazoacridinone C-1311 is a DNA-targeting antitumor intercalator/alkylator currently undergoing Phase II clinical trials. Here, we elucidated the sequence of death responses to C-1311 in human leukemia MOLT4 cells using drug concentration (30 nM) that causes near complete cell growth inhibition at 48 h. Early (6–12 h) responses included transient accumulation of cells at the G2/M border followed by also transient rise in several mitotic markers. Mitotic attempts were largely abnormal, resulting in numerous multinucleated cells (peaking at 24–39 h and declining markedly at later times). These events, indicative of mitotic catastrophe, were not associated with immediate cell death. The fraction of necrotic cells did not exceed 3%. Also, the classical manifestations of apoptosis were marginal at 24 h and their progression clearly followed the decline in the fraction of mitotic and multinucleated cells. Quantification of several apoptotic markers (including phosphatidylserine externalization, apoptotic DNA breaks, mitochondrial dysfunction, caspase activation, and cell membrane integrity) showed a considerable progression and the shift from early to late apoptosis at later times. At 72 h, >80% of cells were apoptotic. Collectively, these findings show that C-1311-induced mitotic catastrophe is not the ultimate death event but rather a step precipitating delayed, albeit massive, apoptotic responses.
Tài liệu tham khảo
Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4:303–313
Chu K, Teele N, Dewey MW, Albright N, Dewey WC (2004) Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14–3-3σ and CDKN1A (p21) knockout cell lines. Radiat Res 162:270–286
Michalakis J, Georgatos SD, Romanos J et al (2005) Micromolar taxol, with or without hyperthermia, induces mitotic catastrophe and cell necrosis in HeLa cells. Cancer Chemother Pharmacol 56:615–622
Vingeron A, Roninson IB, Gamelin E, Coqueret O (2005) Src inhibits adriamycin-induced senescence and G2 checkpoint arrest by blocking the induction of p21waf1. Cancer Res 65:8927–8935
Ianzini F, Bertoldo A, Kosmacek EA, Philips SL, Mackey MA (2006) Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells. Cancer Cell Int 6:11
Ianzini F, Domann FE, Kosmacek EA, Phillips SL, Mackey MA (2007) Human glioblastoma U87MG cells transduced with dominant negative p53 (TP53) adenovirus construct undergo radiation-induced mitotic catastrophe. Radiat Res 168:183–192
Cohen-Jonathan E, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3:77–83
Demarcq C, Bunch RT, Creswell D, Eastman A (1994) The role of cell cycle progression in cisplatin-induced apoptosis in Chinese hamster ovary cells. Cell Growth Differ 5:983–993
Mansilla S, Priebe W, Portugal J (2006) Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 5:53–60
Cholody WM, Martelli S, Konopa J (1992) Chromophore-modified antineoplastic imidazoacridiones. Synthesis and activity against murine leukemias. J Med Chem 35:378–382
Kusnierczyk H, Cholody WM, Paradziej-Lukowicz J, Radzikowski C, Konopa J (1994) Experimental antitumor activity and toxicity of the selected triazolo- and imidazoacridinones. Arch Immunol Ther Exp 42:415–423
Burger AM, Double JA, Konopa J, Bibby MC (1996) Preclinical evaluation of novel imidazoacridinone derivatives with potent activity against experimental colorectal cancer. Br J Cancer 74:1369–1374
Burger AM, Jenkins TC, Double JA, Bibby MC (1999) Cellular uptake, cytotoxicity and DNA-binding studies of the novel imidazoacridinone antineoplastic agent C-1311. Br J Cancer 81:367–375
Berger B, Marquardt H, Westendorf J (1996) Pharmacological and toxicological aspects of new imidazoacridinone antitumour agents. Cancer Res 56:2094–2104
Dziegielewski J, Slusarski B, Kontz A, Skladanowski A, Konopa J (2002) Intercalation of imidazoacridinones to DNA and its relevance to cytotoxic and antitumour activity. Biochem Pharmacol 63:1653–1662
Dziegielewski J, Konopa J (1998) Characterization of covalent binding to DNA of antitumor imidazoacridinone C-1311, after metabolic activation. Ann Oncol 9(Suppl.1):137
Dziegielewski J, Konopa J (1996) Interstrand crosslinking of DNA induced in tumor cells by a new group of antitumor imidazoacridinones. Proc Amer Assoc Cancer Res 37:410
Konopa J, Koba M, Dyrcz A (2005) Interstrand crosslinking of DNA by C-1311 (Symadex) and other imidazoacridinones. Proc Amer Assoc Cancer Res 46:1382
Skladanowski A, Plisov SY, Konopa J, Larsen AK (1996) Inhibition of DNA topoisomersae II by imidazoacridinones, new antineoplastic agents with strong activity against solid tumors. Mol Pharmacol 49:772–780
Augustin E, Wheatley DN, Lamb J, Konopa J (1996) Imidazoacridinones arrest cell-cycle progression in the G2 phase of L1210 cells. Cancer Chemother Pharmacol 38:39–44
Augustin E, Konopa J (1996) Imidazoacridinones induce apoptosis in murine leukemia L1210 cells. Fol Cytochem Cytobiol 34:56
Zaffaroni N, De Marco C, Villa R, Riboldi S, Daidone MG, Double JA (2001) Cell growth inhibition, G2M cell cycle arrest and apoptosis induced by the imidazoacridinone C-1311 in human tumour cell lines. Eur J Cancer 37:1953–1962
Hyzy M, Bozko P, Konopa J, Skladanowski A (2005) Antitumour imidazoacridinone C-1311 induces cell death by mitotic catastrophe in human colon carcinoma cells. Biochem Pharmacol 69:801–809
Augustin E, Moś-Rompa A, Skwarska A, Witkowski JM, Konopa J (2006) Induction of G2/M phase arrest and apoptosis of human leukemia cells by potent antitumor triazoloacridinone C-1305. Biochem Pharmacol 72:1668–1679
Mansila S, Bataller M, Portugal J (2006) Mitotic catastrophe as a consequence of chemotherapy. Anticancer Agents Med Chem 6:589–602
Davis FM, Tsao TY, Fowler SK, Rao PN (1983) Monoclonal antibodies to mitotic cells. Proc Natl Acad Sci 80:2926–2930
Borgne A, Meijer L (1996) Sequential dephosphorylation of p34cdc2 on Thr-14 and Tyr-15 at the prophase/metaphase transition. J Biol Chem 271:27847–27854
Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW (1990) Cyclin activation of p34cdc2. Cell 63:1013–1024
Koopman G, Reutelingsperger C, Kuijten G, Keehnen R, Pals S, Van Oers M (1994) Annexin V for flow cytometric detection of phosphatydilserine expression on B cells undergoing apoptosis. Blood 84:1414–1420
Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with engoeneous endonuclease activation. Nature 284:555–556
Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis. Apoptosis 8:115–128
Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess δ ψ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82
Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspase-2, -3, -6, -7, -8, and -10 i a caspase-9-dependent manner. J Cell Biol 144:281–292
Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277:29803–29809
Candé C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734
Larsen AK, Escargueil AE, Skladanowski A (2003) From DNA damage to G2 arrest: the many roles of topoisomerase II. Prog Cell Cycle Res 5:295–300
Bunz F, Detriaux A, Lengauer C et al (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501
Clifford B, Beljin M, Stark GR, Taylor WR (2003) G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 63:4074–4081
Bhatia U, Danishefsky K, Traganos F, Darzynkiewicz Z (1995) Induction of apoptosis and cell cycle-specific change in expression of p53 in normal lymphocytes and MOLT-4 leukemic cells by nitrogen mustard. Clin Cancer Res 1:873–880
Rodrigues NR, Rowan A, Smith ME et al (1990) P53 mutations in colorectal cancer. Proc Natl Acad Sci USA 87:7555–7559
Kosakowska-Cholody T, Cholody WM, Monks A, Woynarowska BA, Michejda CJ (2005) WMC-79, a potent agent against colon cancers, induces apoptosis through a p53-dependent pathway. Mol Cancer Ther 4:1617–1627
Lamb J, Wheatley DN (1996) Cell killing by novel imidazoacridinone antineoplastic agent, C-1311, is inhibited at higher drug concentrations coincident with dose-differentiated cell cycle perturbations. Brit J Cancer 74:1359–1368
Ruth AC, Roninson IB (2000) Effects of the multidrug transporter P-glycoprotein on cellular responses to ionizing radiation. Cancer Res 60:2576–2578
Eom YW, Kim MA, Park SS et al (2005) Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene 24:4765–4777
Castedo M, Perfettini JL, Roumier T et al (2004) Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23:4362–4370
Andreassen PR, Lacroix FB, Lohez OD, Margolis RL (2001) Neither p21WAF1 nor 14–3-3σ prevents G2 progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21WAF1 induces stable G1 arrest in resulting tetraploid cells. Cancer Res 61:7660–7668
Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM (2003) Endopolyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci 116:4095–4106
Liang H, Salinas RA, Leal BZ et al (2004) Caspase-mediated apoptosis and caspase-independent cell death induced by irofulven in prostate cancer cells. Mol Cancer Ther 3:1385–1396