Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Trình tự và tổ chức các gen hormone thần kinh vùng hạ đồi ở cá cu li: Lịch sử tiến hóa của vị trí gen hormone thần kinh vùng hạ đồi ở động vật có xương sống
Tóm tắt
Các hormone thần kinh vùng hạ đồi ở động vật có vú, bao gồm vasopressin và oxytocin, có vai trò trong việc điều hòa thẩm thấu và co thắt cơ trơn tử cung tương ứng. Tất cả các động vật có xương sống có hàm đều chứa ít nhất một phiên bản đồng hình của vasopressin và oxytocin, trong khi động vật không có hàm chỉ chứa một hormone thần kinh vùng hạ đồi duy nhất gọi là vasotocin. Phiên bản đồng hình của vasopressin trong động vật có xương sống không phải động vật có vú là vasotocin; và phiên bản đồng hình của oxytocin là mesotocin trong các tứ chi không phải sinh sản chân đẻ, mesotocin và [Phe2]mesotocin trong cá phổi, và isotocin trong cá có tia vây. Các gen mã hóa vasopressin và oxytocin trong bộ gen người và chuột được liên kết chặt chẽ theo hướng đuôi đến đuôi. Trái lại, các phiên bản đồng hình của chúng ở cá nóc (vasotocin và isotocin) nằm trên cùng một sợi DNA với gen isotocin nằm ở phía thượng nguồn của gen vasotocin và được ngăn cách bởi năm gen, cho thấy vị trí này đã trải qua các sự tái sắp xếp ở dòng giống động vật có vú hoặc dòng giống cá có tia vây, hoặc cả hai dòng giống này. Cá cu li chiếm một vị trí hệ sinh thái độc đáo gần điểm phân chia giữa dòng giống động vật có vú và cá có tia vây. Chúng tôi đã giải trình tự một đoạn BAC của cá cu li (Latimeria menadoensis) bao gồm các gen hormone thần kinh vùng hạ đồi và điều tra lịch sử tiến hóa của vị trí gen hormone thần kinh vùng hạ đồi ở động vật có xương sống trong khuôn khổ so sánh di truyền học. Cá cu li chứa các gen vasotocin và mesotocin giống như các tứ chi không phải động vật có vú. Các gen ở cá cu li nằm trên cùng một sợi DNA mà không có các gen xen kẽ, với gen vasotocin nằm ở phía thượng nguồn của gen mesotocin. Các trình tự nucleotide của exon thứ hai của hai gen này đang chịu áp lực chọn lọc tinh lọc, cho thấy chức năng điều hòa. Chúng tôi cũng đã phân tích vị trí gen hormone thần kinh vùng hạ đồi trong các bộ gen của thú ăn thịt, gà và Xenopus tropicalis. Thú ăn thịt chứa hai phiên bản gen vasopressin và mesotocin theo cặp. Các gen vasotocin và mesotocin trong gà và Xenopus, cũng như các gen vasopressin và mesotocin trong thú ăn thịt, được liên kết đuôi đến đầu tương tự như các ortholog của chúng ở cá cu li và khác biệt với các đồng hình của chúng ở người và động vật gặm nhấm. Kết quả của chúng tôi cho thấy rằng vị trí gen hormone thần kinh vùng hạ đồi đã trải qua các sự tái sắp xếp độc lập ở cả động vật có vú và cá teleost. Bộ gen của cá cu li dường như ổn định hơn so với bộ gen của động vật có vú và cá teleost. Do đó, nó phục vụ như một nhóm ngoài có giá trị để nghiên cứu sự tiến hóa của bộ gen động vật có vú và cá teleost.
Từ khóa
#hormone thần kinh #vasopressin #oxytocin #cá cu li #di truyền học so sánh #tiến hóaTài liệu tham khảo
Cunningham ET, Sawchenko PE: Reflex control of magnocellular vasopressin and oxytocin secretion. Trends Neurosci. 1991, 14 (9): 406-411. 10.1016/0166-2236(91)90032-P.
Kiss A, Mikkelsen JD: Oxytocin--anatomy and functional assignments: a minireview. Endocr Regul. 2005, 39 (3): 97-105.
Oumi T, Ukena K, Matsushima O, Ikeda T, Fujita T, Minakata H, Nomoto K: Annetocin: an oxytocin-related peptide isolated from the earthworm, Eisenia foetida. Biochem Biophys Res Commun. 1994, 198 (1): 393-399. 10.1006/bbrc.1994.1055.
Proux JP, Miller CA, Li JP, Carney RL, Girardie A, Delaage M, Schooley DA: Identification of an arginine vasopressin-like diuretic hormone from Locusta migratoria. Biochem Biophys Res Commun. 1987, 149 (1): 180-186. 10.1016/0006-291X(87)91621-4.
Takuwa-Kuroda K, Iwakoshi-Ukena E, Kanda A, Minakata H: Octopus, which owns the most advanced brain in invertebrates, has two members of vasopressin/oxytocin superfamily as in vertebrates. Regul Pept. 2003, 115 (2): 139-149. 10.1016/S0167-0115(03)00151-4.
Heierhorst J, Lederis K, Richter D: Presence of a member of the Tc1-like transposon family from nematodes and Drosophila within the vasotocin gene of a primitive vertebrate, the Pacific hagfish Eptatretus stouti. Proc Natl Acad Sci U S A. 1992, 89 (15): 6798-6802. 10.1073/pnas.89.15.6798.
Suzuki M, Kubokawa K, Nagasawa H, Urano A: Sequence analysis of vasotocin cDNAs of the lamprey, Lampetra japonica, and the hagfish, Eptatretus burgeri: evolution of cyclostome vasotocin precursors. J Mol Endocrinol. 1995, 14 (1): 67-77.
Hyodo S, Ishii S, Joss JM: Australian lungfish neurohypophysial hormone genes encode vasotocin and [Phe2]mesotocin precursors homologous to tetrapod-type precursors. Proc Natl Acad Sci U S A. 1997, 94 (24): 13339-13344. 10.1073/pnas.94.24.13339.
Acher R, Chauvet J, Chauvet MT: A tetrapod neurohypophysial hormone in African lungfishes. Nature. 1970, 227 (5254): 186-187. 10.1038/227186a0.
Michel G, Chauvet J, Joss JM, Acher R: Lungfish neurohypophysial hormones: chemical identification of mesotocin in the neurointermediate pituitary of the Australian lungfish Neoceratodus forsteri. Gen Comp Endocrinol. 1993, 91 (3): 330-336. 10.1006/gcen.1993.1133.
Michel G, Chauvet J, Chauvet MT, Clarke C, Bern H, Acher R: Chemical identification of the mammalian oxytocin in a holocephalian fish, the ratfish (Hydrolagus colliei). Gen Comp Endocrinol. 1993, 92 (2): 260-268. 10.1006/gcen.1993.1162.
Acher R, Chauvet J, Chauvet MT: Phylogeny of the neurohypophysial hormones. Two new active peptides isolated from a cartilaginous fish, Squalus acanthias. Eur J Biochem. 1972, 29 (1): 12-19. 10.1111/j.1432-1033.1972.tb01951.x.
Acher R, Chauvet J, Chauvet MT, Rouille Y: Unique evolution of neurohypophysial hormones in cartilaginous fishes: possible implications for urea-based osmoregulation. J Exp Zool. 1999, 284 (5): 475-484. 10.1002/(SICI)1097-010X(19991001)284:5<475::AID-JEZ2>3.0.CO;2-9.
Chauvet J, Rouille Y, Chauveau C, Chauvet MT, Acher R: Special evolution of neurohypophysial hormones in cartilaginous fishes: asvatocin and phasvatocin, two oxytocin-like peptides isolated from the spotted dogfish (Scyliorhinus caniculus). Proc Natl Acad Sci U S A. 1994, 91 (23): 11266-11270. 10.1073/pnas.91.23.11266.
Hara Y, Battey J, Gainer H: Structure of mouse vasopressin and oxytocin genes. Brain Res Mol Brain Res. 1990, 8 (4): 319-324. 10.1016/0169-328X(90)90045-F.
Sausville E, Carney D, Battey J: The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem. 1985, 260 (18): 10236-10241.
Schmitz E, Mohr E, Richter D: Rat vasopressin and oxytocin genes are linked by a long interspersed repeated DNA element (LINE): sequence and transcriptional analysis of LINE. DNA Cell Biol. 1991, 10 (2): 81-91.
Davies J, Waller S, Zeng Q, Wells S, Murphy D: Further delineation of the sequences required for the expression and physiological regulation of the vasopressin gene in transgenic rat hypothalamic magnocellular neurones. J Neuroendocrinol. 2003, 15 (1): 42-50. 10.1046/j.1365-2826.2003.00865.x.
Murphy D, Wells S: In vivo gene transfer studies on the regulation and function of the vasopressin and oxytocin genes. J Neuroendocrinol. 2003, 15 (2): 109-125. 10.1046/j.1365-2826.2003.00964.x.
Young WS, Gainer H: Transgenesis and the study of expression, cellular targeting and function of oxytocin, vasopressin and their receptors. Neuroendocrinology. 2003, 78 (4): 185-203. 10.1159/000073702.
Venkatesh B, Si-Hoe SL, Murphy D, Brenner S: Transgenic rats reveal functional conservation of regulatory controls between the Fugu isotocin and rat oxytocin genes. Proc Natl Acad Sci U S A. 1997, 94 (23): 12462-12466. 10.1073/pnas.94.23.12462.
Brinkmann H, Venkatesh B, Brenner S, Meyer A: Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc Natl Acad Sci U S A. 2004, 101 (14): 4900-4905. 10.1073/pnas.0400609101.
Cao Y, Waddell PJ, Okada N, Hasegawa M: The complete mitochondrial DNA sequence of the shark Mustelus manazo: evaluating rooting contradictions to living bony vertebrates. Mol Biol Evol. 1998, 15 (12): 1637-1646.
Tohyama Y, Ichimiya T, Kasama-Yoshida H, Cao Y, Hasegawa M, Kojima H, Tamai Y, Kurihara T: Phylogenetic relation of lungfish indicated by the amino acid sequence of myelin DM20. Brain Res Mol Brain Res. 2000, 80 (2): 256-259. 10.1016/S0169-328X(00)00143-1.
Zardoya R, Cao Y, Hasegawa M, Meyer A: Searching for the closest living relative(s) of tetrapods through evolutionary analyses of mitochondrial and nuclear data. Mol Biol Evol. 1998, 15 (5): 506-517.
Venkatesh B, Erdmann MV, Brenner S: Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc Natl Acad Sci U S A. 2001, 98 (20): 11382-11387. 10.1073/pnas.201415598.
Smith JLB: A surviving fish of the Order Actinistia. Trans Royal Sco S Afr. 1939, 27 (1): 47-50.
Holder MT, Erdmann MV, Wilcox TP, Caldwell RL, Hillis DM: Two living species of coelacanths?. Proc Natl Acad Sci U S A. 1999, 96 (22): 12616-12620. 10.1073/pnas.96.22.12616.
Pouyaud L, Wirjoatmodjo S, Rachmatika I, Tjakrawidjaja A, Hadiaty R, Hadie W: [A new species of coelacanth. Genetic and morphologic proof]. C R Acad Sci III. 1999, 322 (4): 261-267.
Griffith RW, Umminger BL, Grant BF, Pang PK, Pickford GE: Serum composition of the coelacanth, Latimeria chalumnae Smith. J Exp Zool. 1974, 187 (1): 87-102. 10.1002/jez.1401870111.
Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D: A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature. 2006, 441 (7089): 87-90. 10.1038/nature04696.
Nishihara H, Smit AF, Okada N: Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 2006, 16 (7): 864-874. 10.1101/gr.5255506.
Flores CM, Munoz D, Soto M, Kausel G, Romero A, Figueroa J: Copeptin, derived from isotocin precursor, is a probable prolactin releasing factor in carp. Gen Comp Endocrinol. 2007, 150 (2): 343-354. 10.1016/j.ygcen.2006.09.005.
Ruppert S, Scherer G, Schutz G: Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence. Nature. 1984, 308 (5959): 554-557. 10.1038/308554a0.
Galtier N: Gene conversion drives GC content evolution in mammalian histones. Trends Genet. 2003, 19 (2): 65-68. 10.1016/S0168-9525(02)00002-1.
Marais G: Biased gene conversion: implications for genome and sex evolution. Trends Genet. 2003, 19 (6): 330-338. 10.1016/S0168-9525(03)00116-1.
Noonan JP, Grimwood J, Schmutz J, Dickson M, Myers RM: Gene conversion and the evolution of protocadherin gene cluster diversity. Genome Res. 2004, 14 (3): 354-366. 10.1101/gr.2133704.
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20. 10.1016/j.cell.2004.12.035.
Fairbrother WG, Yeh RF, Sharp PA, Burge CB: Predictive identification of exonic splicing enhancers in human genes. Science (New York, NY. 2002, 297 (5583): 1007-1013.
Koh EG, Lam K, Christoffels A, Erdmann MV, Brenner S, Venkatesh B: Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis. Proc Natl Acad Sci U S A. 2003, 100 (3): 1084-1088. 10.1073/pnas.0237317100.
Danke J, Miyake T, Powers T, Schein J, Shin H, Bosdet I, Erdmann M, Caldwell R, Amemiya CT: Genome resource for the Indonesian coelacanth, Latimeria menadoensis. J Exp Zoolog A Comp Exp Biol. 2004, 301 (3): 228-234. 10.1002/jez.a.20024.
National Centre for Biotechnology Information . [http://www.ncbi.nlm.nih.gov]
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25 (24): 4876-4882. 10.1093/nar/25.24.4876.
RepeatMasker . [http://www.repeatmasker.org/]
UCSC Genome Browser . [http://genome.ucsc.edu/]
Chauvet J, Hurpet D, Michel G, Chauvet MT, Acher R: Two multigene families for marsupial neurohypophysial hormones? Identification of oxytocin, mesotocin, lysipressin and arginine vasopressin in the North American opossum (Didelphis virginiana). Biochem Biophys Res Commun. 1984, 123 (1): 306-311.
Gimpl G, Fahrenholz F: The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 2001, 81 (2): 629-683.
Hyodo S, Tsukada T, Takei Y: Neurohypophysial hormones of dogfish, Triakis scyllium: structures and salinity-dependent secretion. Gen Comp Endocrinol. 2004, 138 (2): 97-104. 10.1016/j.ygcen.2004.05.009.