Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence

Philosophical Transactions of the Royal Society B: Biological Sciences - Tập 353 Số 1373 - Trang 1257-1270 - 1998
Steven A. Hillyard1, Edward K. Vogel2, Steven J. Luck2
1Department of Neurosciences, University of California, San Diego, LaJolla, CA 92093–0608, USA
2Department of Psychology, University of Iowa, Iowa City, IA 52242-1407, USA

Tóm tắt

Both physiological and behavioral studies have suggested that stimulus–driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event–related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual–spatial attention. Combined event–related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs).

Từ khóa


Tài liệu tham khảo

10.3109/00207459508986109

Broadbent D. E. 1958 Perception and communication. New York: Pergamon.

Chelazzi L. Miller E. K. Duncan J. & Desimone R. 1993 A neural basis for visual search in inferior temporal cortex. Nature 363 345^347.

10.1162/jocn.1996.8.5.387

Clark V. P. Fan S. & Hillyard S. A. 1995 Identi¢cation of early visually evoked potential generators by retinotopic and topographic analyses. Hum. Brain Mapp. 2 170^187.

Corbetta M. Miezin F. M. Dobmeyer S. Shulman G. L. & Petersen S. E. 1990 Attentional modulation of neural processing of shape color and velocity in humans. Science 248 1556^1559.

10.1523/JNEUROSCI.11-08-02383.1991

Crick F. 1984 Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natn. Acad. Sci. USA 81 4586^4590.

10.1146/annurev.ne.18.030195.001205

DeYoe E. A. Carman G. J. Bandettini P. Glickman S. Wieser J. Cox R. Miller D. & Neitz J. 1996 Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natn. Acad. Sci. USA 93 2382^2386.

10.3758/BF03206140

10.1037/0096-1523.18.2.578

Eason R. G. 1981 Visual evoked potential correlates of early neural ¢ltering during selective attention. Bull. Psychon. Soc. 18 203^206.

Eimer M. 1997 Attentional selection and attentional gradients: an alternative method for studying transient visual-spatial attention. Psychophysiology 34 365^376.

10.1152/jn.1989.61.2.331

10.1523/JNEUROSCI.02-03-00361.1982

Gomez C. M., 1994, Sources of attention-sensitive visual event-related potentials, BrainTopogr., 7, 51

Gratton G. 1997 Attention and probability e¡ects in the human occipital cortex: an optical imaging study. NeuroReport 8 1749^1753.

Harter M. R. & Aine C. J. 1984 Brain mechanisms of visual selective attention. In Varieties of attention (ed. R. Parasuraman & D. R. Davies) pp. 293^321. London: Academic Press.

10.1037/0096-1523.16.4.802

Heinze H. J. Luck S. J. Mangun G. R. & Hillyard S. A. 1990 Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr. Clin. Neurophysiol. 75 511^527.

Heinze H. J. (and 11 others) 1994 Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372 543^546.

Hernandez-Peon R. 1966 Physiological mechanisms in attention. In Frontiers in physiological psychology (ed. R. W. Russell) pp. 121^147. New York: Academic Press.

Hernandez-Peon R. Scherrer H. & Jouvet M. 1956 Modi¢cation of electrical activity in the cochlear nucleus during attention in unanesthetized cats. Science 123 331^332.

Hikosaka O. Miyauchi S. & Shimojo S. 1993 Focal visual attention produces illusory temporal order and motion sensation.Vis. Res. 33 1219^1240.

Hillyard S. A. & Muente T. F. 1984 Selective attention to color and locational cues: an analysis with event-related brain potentials. Percept. Psychophys. 36 185^198.

Hillyard S. A. Hink R. F. Schwent V. L. & Picton T. W. 1973 Electrical signs of selective attention in the human brain. Science 182 177^179.

Hillyard S. A. Mangun G. R. Woldor¡ M. G. & Luck S. J. 1995 Neural systems mediating selective attention. In The cognitive neurosciences (ed. M. S. Gazzaniga) pp. 665^681. Cambridge MA: MIT Press.

Hillyard S. A. Anllo-Vento L. Clark V. P. Heinze H. J. Luck S. J. & Mangun G. R. 1996 Neuroimaging approaches to the study of visual attention: a tutorial. In Converging operations in the study of visual selective attention (ed. A. K. M. Coles & G. Logan) pp. 107^138. Washington DC: American Psychological Association.

Johannes S. Muente T. F. Heinze H. J. & Mangun G. R. 1995 Luminance and spatial attention e¡ects on early visual processing. Cogn. Brain Res. 2 189^205.

Johannes S. Knalmann U. Mangun G. R. Heinze H. J. & Munte T. F. 1998 The visual C1 component: scalp topography dipole sources and e¡ects of Iuminance and spatial attention. In Mapping cognition in time and space (ed. H. J. Heinze T. F. Muente G. R. Mangun & H. H. Scheich). Boston MA: Birhauser. (In the press.)

LaBerge D. 1995 Computational and anatomical models of selective attention in object identi¢cation. In The cognitive neurosciences (ed. M. S. Gazzaniga) pp. 649^661. Cambridge MA: MIT Press.

10.1037/0096-1523.21.3.451

Luck S. J. 1995 Multiple mechanisms of visual-spatial attention: recent evidence from human electrophysiology. Behav. Brain Res. 71 113^123.

10.3109/00207459508986105

Luck S. J. Heinze H. J. Mangun G. R. & Hillyard S. A. 1990 Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1components. Electroencephalogr. Clin. Neurophysiol. 75 528^542.

10.1162/jocn.1993.5.2.188

10.1037/0096-1523.20.4.887

10.1037/0096-1523.22.3.725

10.1152/jn.1997.77.1.24

10.1037/0096-1523.17.4.1057

Mangun G. R. & Hillyard S. A. 1995 Attention: mechanisms and models. In Electrophysiology of mind ^ event-related potentials and cognition (ed. M. D. Rugg & M. G. H. Coles) pp. 40^85. Oxford University Press.

Mangun G. R. Hillyard S. A. & Luck S. J. 1993 Electrocortical substrates of visual selective attention. In Attention and performance XIV (ed. D. Meyer & S. Kornblum) pp. 219^243. Cambridge MA: MIT Press.

10.1002/(SICI)1097-0193(1997)5:4<273::AID-HBM12>3.0.CO;2-F

Miller E. K. & Desimone R. 1994 Parallel neuronal mechanisms for short-term memory. Science 263 520^522.

10.1152/jn.1993.70.3.909

Naatanen R. 1992 Attention and brain function. Hillsdale NJ: Lawrence Erlbaum.

Newsome W. T. Shadlen M. N. Zohary E. Britten K. H. & Movshon J. A. 1995 Visual motion: linking neuronal activity to psychophysical performance. In The cognitive neurosciences (ed. M. S. Gazzaniga) pp. 401^414. Cambridge MA: MIT Press.

Oatman L. C. & Anderson B.W. 1977 E¡ects of visual attention on tone burst evoked auditory potentials. Exp. Neurol. 57 200^211.

10.1006/brln.1996.0034

10.1016/0166-2236(94)90078-7

Posner M. I. & Driver J. 1992 The neurobiology of selective attention. Curr. Opin. Neurobiol. 2 165^169.

Rees G. Frackowiak R. & Frith C. 1997 Two modulatory e¡ects of attention that mediate object categorization in human cortex. Science 275 835^838.

Reinitz M. T. 1990 E¡ects of spatially directed attention on visual encoding. Percept. Psychophys. 47 497^505.

10.1111/j.1469-8986.1983.tb03283.x

Ritter W. Simson R. & Vaughan H. G.1988 E¡ects of the amount of stimulus information processed on negative event-related potentials. Electroencephalogr. Clin. Neurophysiol. 69 244^258.

Scherg M. 1990 Fundamentals of dipole source potential analysis. In Auditory evoked magnetic ¢elds and potentials. Advanced audiology vol. 6 (ed. F. Grandori M. Hoke & G. L. Romani) pp. 40^69. Basel: Karger.

Sereno M. I. Dale A. M. Reppas J. B. Kwong K. K. Belliveau J. W. Brady T. J. Rosen B. R. & Tootell R. B. H. 1995 Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268 889^893.

Shiu L. P. & Pashler H. 1995 Spatial attention and vernier acuity.Vis. Res. 35 337^343.

10.1093/cercor/7.3.193

Sperling G. & Dosher B. A. 1986 Strategy and optimization in human information processing. In Handbook of perception and human performance vol. 1 (ed. L. K. K. R. Bo¡ & J. P. Thomas) pp. 2^65. New York: Wiley.

Talairach J. & Tournoux P. (eds) 1988 Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. New York: Thieme Medical Publishing Inc.

10.1523/JNEUROSCI.15-04-03215.1995

10.1037/h0027242

10.1080/02724988843000104

Treisman A. 1996 The binding problem. Curr. Opin. Neurobiol. 6 171^178.

10.1080/14640749408401100

Vogel E. K., 1997, ERP evidence for a generalpurpose visual discrimination mechanism, Soc. Neurosci. Abstr., 23, 158

Wijers A. A. Lange J. J. Mulder G. & Mulder L. J. M. 1997 An ERP study of visual spatial attention and letter target detection for isoluminant and nonisoluminant stimuli. Psychophysiology 34 553^565.

Woldor¡ M. G. (and 10 others) 1997 Retinotopic organization of the early visual-spatial attention e¡ects as revealed by PET and ERPs. Hum. Brain Mapp. 5 280^286.

Worden M., 1996, Visuospatial attentional selection examined with functional magnetic resonance imaging, Soc. Neurosci. Abstr., 22, 1856

10.1523/JNEUROSCI.11-03-00641.1991