Sensitivities of the NCEP Global Forecast System

Monthly Weather Review - Tập 147 Số 4 - Trang 1237-1256 - 2019
Jih-Wang A. Wang1,2, Prashant D. Sardeshmukh1,2, Gilbert P. Compo1,2, Jeffrey S. Whitaker1,2, Laura Slivinski1,2, Chesley McColl1,2, Philip Pegion1,2
1CIRES, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
2Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Tóm tắt

AbstractAn important issue in developing a forecast system is its sensitivity to additional observations for improving initial conditions, to the data assimilation (DA) method used, and to improvements in the forecast model. These sensitivities are investigated here for the Global Forecast System (GFS) of the National Centers for Environmental Prediction (NCEP). Four parallel sets of 7-day ensemble forecasts were generated for 100 forecast cases in mid-January to mid-March 2016. The sets differed in their 1) inclusion or exclusion of additional observations collected over the eastern Pacific during the El Niño Rapid Response (ENRR) field campaign, 2) use of a hybrid 4D–EnVar versus a pure EnKF DA method to prepare the initial conditions, and 3) inclusion or exclusion of stochastic parameterizations in the forecast model. The Control forecast set used the ENRR observations, hybrid DA, and stochastic parameterizations. Errors of the ensemble-mean forecasts in this Control set were compared with those in the other sets, with emphasis on the upper-tropospheric geopotential heights and vorticity, midtropospheric vertical velocity, column-integrated precipitable water, near-surface air temperature, and surface precipitation. In general, the forecast errors were found to be only slightly sensitive to the additional ENRR observations, more sensitive to the DA methods, and most sensitive to the inclusion of stochastic parameterizations in the model, which reduced errors globally in all the variables considered except geopotential heights in the tropical upper troposphere. The reduction in precipitation errors, determined with respect to two independent observational datasets, was particularly striking.

Từ khóa


Tài liệu tham khảo

Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 1452–1463, https://doi.org/10.1175/JTECH2049.1.10.1175/JTECH2049.1

Ashouri, H., K. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1.10.1175/BAMS-D-13-00068.1

Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, https://doi.org/10.1038/nature14956.10.1038/nature14956

Berner, J., G. Shutts, M. Leutbecher, and T. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow- dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603–626, https://doi.org/10.1175/2008JAS2677.1.10.1175/2008JAS2677.1

Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 1256–1271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2

Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669–682, https://doi.org/10.5194/npg-20-669-2013.10.5194/npg-20-669-2013

Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282–290, https://doi.org/10.1175/2009MWR3017.1.10.1175/2009MWR3017.1

Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, https://doi.org/10.1002/qj.49712051912.10.1002/qj.49712051912

Dole, R. M., and Coauthors, 2018: Advancing science and services during the 2015/16 El Niño: The NOAA El Niño Rapid Response field campaign. Bull. Amer. Meteor. Soc., 99, 975–1002, https://doi.org/10.1175/BAMS-D-16-0219.1.10.1175/BAMS-D-16-0219.1

Efron, B., 1982: The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial and Applied Mathematics, 92 pp.10.1137/1.9781611970319

Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman & Hall, 456 pp.10.1007/978-1-4899-4541-9

Environmental Modeling Center, 2003: The GFS Atmospheric Model. NCEP Office Note 442, Global Climate and Weather Modeling Branch, EMC, Camp Springs, MD, 14 pp., https://www.nws.noaa.gov/ost/climate/STIP/AGFS_DOC_1103.pdf.

Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367, https://doi.org/10.1007/s10236-003-0036-9.10.1007/s10236-003-0036-9

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, https://doi.org/10.1002/qj.49712555417.10.1002/qj.49712555417

Hall, N. M. J., and P. D. Sardeshmukh, 1998: Is the time-mean Northern Hemisphere flow baroclinically unstable? J. Atmos. Sci., 55, 41–56, https://doi.org/10.1175/1520-0469(1998)055<0041:ITTMNH>2.0.CO;2.10.1175/1520-0469(1998)055<0041:ITTMNH>2.0.CO;2

Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123–137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2

Huffman, D., D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, 2014: Integrated Multi-satellite Retrievals for GPM (IMERG), version 4.4. NASA’s Precipitation Processing Center, accessed 31 March 2015, ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/.

Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452–470, https://doi.org/10.1175/MWR-D-13-00350.1.10.1175/MWR-D-13-00350.1

Lei, L., and J. S. Whitaker, 2015: Model space localization is not always better than observation space localization for assimilation of satellite radiances. Mon. Wea. Rev., 143, 3948–3955, https://doi.org/10.1175/MWR-D-14-00413.1.10.1175/MWR-D-14-00413.1

Lei, L., and J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 2605–2621, https://doi.org/10.1175/MWR-D-15-0246.1.10.1175/MWR-D-15-0246.1

Lei, L., J. S. Whitaker, and C. Bishop, 2018: Improving assimilation of radiance observations by implementing model space localization in an ensemble Kalman filter. J. Adv. Model. Earth Syst., 10, 3221–3232, https://doi.org/10.1029/2018MS001468.10.1029/2018MS001468

Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 2315–2339, https://doi.org/10.1002/qj.3094.10.1002/qj.3094

Lewis, J. M., and J. C. Derber, 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus, 37A, 309–322, https://doi.org/10.3402/tellusa.v37i4.11675.10.1111/j.1600-0870.1985.tb00430.x

Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp.

Sardeshmukh, P. D., 2005: Issues in stochastic parameterization. Proc. Workshop on Representation of Sub-Grid Processes Using Stochastic-Dynamic Models, Shinfield Park, Reading, ECMWF, 5–12.

Sardeshmukh, P. D., and B. J. Hoskins, 1984: Spatial smoothing on the sphere. Mon. Wea. Rev., 112, 2524–2529, https://doi.org/10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2.10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2

Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228–1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2

Sardeshmukh, P. D., G. P. Compo, and M. C. Penland, 2015: Need for caution in interpreting extreme weather statistics. J. Climate, 28, 9166–9187, https://doi.org/10.1175/JCLI-D-15-0020.1.10.1175/JCLI-D-15-0020.1

Shutts, G., M. Leutbecher, A. Weisheimer, T. Stockdale, L. Isaksen, and M. Bonavita, 2011: Representing model uncertainty: Stochastic parameterizations at ECMWF. ECMWF Newsletter, No. 129, ECMWF, Reading, United Kingdom, 19–24.

Sorooshian, S., K. Hsu, D. Braithwaite, H. Ashouri, and NOAA CDR Program, 2014: NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR), version 1, revision 1. NOAA/National Centers for Environmental Information, accessed 27 April 2017, https://doi.org/10.7289/V51V5BWQ.10.7289/V51V5BWQ

Takacs, L. L., M. J. Suárez, and R. Todling, 2018: The stability of incremental analysis update. Mon. Wea. Rev., 146, 3259–3275, https://doi.org/10.1175/MWR-D-18-0117.1.10.1175/MWR-D-18-0117.1

Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907–918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2

Tompkins, A. M., and J. Berner, 2008: A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. J. Geophys. Res., 113, D18101, https://doi.org/10.1029/2007JD009284.10.1029/2007JD009284

Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 5116–5131, https://doi.org/10.1175/2008MWR2444.1.10.1175/2008MWR2444.1

Weaver, A., and P. Courtier, 2001: Correlation modelling on the sphere using a generalized diffusion equation. Quart. J. Roy. Meteor. Soc., 127, 1815–1846, https://doi.org/10.1002/qj.49712757518.10.1002/qj.49712757518

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913–1924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2