Sensitivities of the NCEP Global Forecast System
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 1452–1463, https://doi.org/10.1175/JTECH2049.1.10.1175/JTECH2049.1
Ashouri, H., K. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1.10.1175/BAMS-D-13-00068.1
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, https://doi.org/10.1038/nature14956.10.1038/nature14956
Berner, J., G. Shutts, M. Leutbecher, and T. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow- dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603–626, https://doi.org/10.1175/2008JAS2677.1.10.1175/2008JAS2677.1
Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 1256–1271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2
Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669–682, https://doi.org/10.5194/npg-20-669-2013.10.5194/npg-20-669-2013
Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282–290, https://doi.org/10.1175/2009MWR3017.1.10.1175/2009MWR3017.1
Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, https://doi.org/10.1002/qj.49712051912.10.1002/qj.49712051912
Dole, R. M., and Coauthors, 2018: Advancing science and services during the 2015/16 El Niño: The NOAA El Niño Rapid Response field campaign. Bull. Amer. Meteor. Soc., 99, 975–1002, https://doi.org/10.1175/BAMS-D-16-0219.1.10.1175/BAMS-D-16-0219.1
Efron, B., 1982: The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial and Applied Mathematics, 92 pp.10.1137/1.9781611970319
Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman & Hall, 456 pp.10.1007/978-1-4899-4541-9
Environmental Modeling Center, 2003: The GFS Atmospheric Model. NCEP Office Note 442, Global Climate and Weather Modeling Branch, EMC, Camp Springs, MD, 14 pp., https://www.nws.noaa.gov/ost/climate/STIP/AGFS_DOC_1103.pdf.
Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367, https://doi.org/10.1007/s10236-003-0036-9.10.1007/s10236-003-0036-9
Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, https://doi.org/10.1002/qj.49712555417.10.1002/qj.49712555417
Hall, N. M. J., and P. D. Sardeshmukh, 1998: Is the time-mean Northern Hemisphere flow baroclinically unstable? J. Atmos. Sci., 55, 41–56, https://doi.org/10.1175/1520-0469(1998)055<0041:ITTMNH>2.0.CO;2.10.1175/1520-0469(1998)055<0041:ITTMNH>2.0.CO;2
Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123–137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
Huffman, D., D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, 2014: Integrated Multi-satellite Retrievals for GPM (IMERG), version 4.4. NASA’s Precipitation Processing Center, accessed 31 March 2015, ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/.
Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452–470, https://doi.org/10.1175/MWR-D-13-00350.1.10.1175/MWR-D-13-00350.1
Lei, L., and J. S. Whitaker, 2015: Model space localization is not always better than observation space localization for assimilation of satellite radiances. Mon. Wea. Rev., 143, 3948–3955, https://doi.org/10.1175/MWR-D-14-00413.1.10.1175/MWR-D-14-00413.1
Lei, L., and J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 2605–2621, https://doi.org/10.1175/MWR-D-15-0246.1.10.1175/MWR-D-15-0246.1
Lei, L., J. S. Whitaker, and C. Bishop, 2018: Improving assimilation of radiance observations by implementing model space localization in an ensemble Kalman filter. J. Adv. Model. Earth Syst., 10, 3221–3232, https://doi.org/10.1029/2018MS001468.10.1029/2018MS001468
Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 2315–2339, https://doi.org/10.1002/qj.3094.10.1002/qj.3094
Lewis, J. M., and J. C. Derber, 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus, 37A, 309–322, https://doi.org/10.3402/tellusa.v37i4.11675.10.1111/j.1600-0870.1985.tb00430.x
Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp.
Sardeshmukh, P. D., 2005: Issues in stochastic parameterization. Proc. Workshop on Representation of Sub-Grid Processes Using Stochastic-Dynamic Models, Shinfield Park, Reading, ECMWF, 5–12.
Sardeshmukh, P. D., and B. J. Hoskins, 1984: Spatial smoothing on the sphere. Mon. Wea. Rev., 112, 2524–2529, https://doi.org/10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2.10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2
Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228–1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
Sardeshmukh, P. D., G. P. Compo, and M. C. Penland, 2015: Need for caution in interpreting extreme weather statistics. J. Climate, 28, 9166–9187, https://doi.org/10.1175/JCLI-D-15-0020.1.10.1175/JCLI-D-15-0020.1
Shutts, G., M. Leutbecher, A. Weisheimer, T. Stockdale, L. Isaksen, and M. Bonavita, 2011: Representing model uncertainty: Stochastic parameterizations at ECMWF. ECMWF Newsletter, No. 129, ECMWF, Reading, United Kingdom, 19–24.
Sorooshian, S., K. Hsu, D. Braithwaite, H. Ashouri, and NOAA CDR Program, 2014: NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR), version 1, revision 1. NOAA/National Centers for Environmental Information, accessed 27 April 2017, https://doi.org/10.7289/V51V5BWQ.10.7289/V51V5BWQ
Takacs, L. L., M. J. Suárez, and R. Todling, 2018: The stability of incremental analysis update. Mon. Wea. Rev., 146, 3259–3275, https://doi.org/10.1175/MWR-D-18-0117.1.10.1175/MWR-D-18-0117.1
Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907–918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2
Tompkins, A. M., and J. Berner, 2008: A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. J. Geophys. Res., 113, D18101, https://doi.org/10.1029/2007JD009284.10.1029/2007JD009284
Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 5116–5131, https://doi.org/10.1175/2008MWR2444.1.10.1175/2008MWR2444.1
Weaver, A., and P. Courtier, 2001: Correlation modelling on the sphere using a generalized diffusion equation. Quart. J. Roy. Meteor. Soc., 127, 1815–1846, https://doi.org/10.1002/qj.49712757518.10.1002/qj.49712757518