Senescence: why and where selection gradients might not decline with age

Proceedings of the Royal Society B: Biological Sciences - Tập 288 Số 1955 - Trang 20210851 - 2021
Mark Roper1, Pol Capdevila1,2, Roberto Salguero‐Gómez3,1,4
1Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
2School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
3Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland 4071, Australia
4Evolutionary Demography Laboratory, Max Plank Institute for Demographic Research, Rostock 18057, Germany

Tóm tắt

Patterns of ageing across the tree of life are much more diverse than previously thought. Yet, we still do not adequately understand how, why and where across the tree of life a particular pattern of ageing will evolve. An ability to predict ageing patterns requires a firmer understanding of how and why different ecological and evolutionary factors alter the sensitivity of fitness to age-related changes in mortality and reproduction. From this understanding, we can ask why and where selection gradients might not decline with age. Here, we begin by summarizing the recent breadth of literature that is unearthing, empirically and theoretically, the mechanisms that drive variation in patters of senescence. We focus on the relevance of two key parameters, population structure and reproductive value, as key to understanding selection gradients, and therefore senescence. We discuss how growth form, individual trade-offs, stage structure and social interactions may all facilitate differing distributions of these two key parameters than those predicted by classical theory. We argue that these four key aspects can help us understand why patterns of negligible and negative senescence can actually be explained under the same evolutionary framework as classical senescence.

Từ khóa


Tài liệu tham khảo

Medawar PB. 1952. An unsolved problem of biology. London, UK: H. K. Lewis.

10.1111/j.1558-5646.1957.tb02911.x

10.1016/0022-5193(66)90184-6

10.1038/270301a0

10.5962/bhl.title.27468

Rose MR. 1991 Evolutionary biology of aging. New York, NY: Oxford University Press.

10.1093/genetics/156.3.927

10.1038/35041682

10.1038/362305a0

10.1073/pnas.89.20.9920

10.1126/science.1083532

10.1111/j.1558-5646.2007.00120.x

10.1017/CBO9780511525711

10.1007/s11692-016-9385-4

10.1016/0040-5809(78)90025-4

10.4054/DemRes.2010.23.19

10.1073/pnas.0502155102

10.1111/evo.13379

Abrams PA. 1993 Does increased mortality favour the evolution of more rapid senescence? Evolution 71, 2768-2785. (doi:10.2307/2410191)

10.1016/j.tree.2019.02.006

10.1016/j.tree.2019.11.005

10.1016/j.tree.2007.01.006

10.1111/j.0014-3820.2003.tb00356.x

10.1038/nature12789

Finch CE. 1994 Longevity, senescence and the genome. Chicago, IL: University of Chicago Press.

10.1016/j.tpb.2003.12.003

Caswell H. 2001 Matrix population models. Sunderland MA: Sinauer Associates.

10.1007/s10522-017-9727-3

10.1126/science.1226467

10.1111/1365-2656.12482

10.1111/1365-2745.12334

10.1111/1365-2745.12084

Keyfitz N. 1977 Applied mathematical demography. New York, NY: John Wiley and Sons.

10.1111/j.2041-210X.2010.00087.x

10.1111/2041-210X.13289

10.1038/44766

Sánchez-Reyes LL O'Meara BC. 2019 DateLife: leveraging databases and analytical tools to reveal the dated Tree of Life. BioRxiv .

10.1111/ecog.04434

Chiang CL. 1984 The life table and its applications. Malabar, FL: Krieger Publishing.

10.1016/j.tree.2010.08.002

10.1111/j.1365-2435.2008.01408.x

10.1016/j.arr.2012.07.004

10.1111/j.1365-2745.2012.02001.x

10.1086/503331

10.1073/pnas.1816367116

10.1111/1365-2435.13506

10.1073/pnas.1612191113

10.1093/gerona/57.2.B69

10.1016/j.tree.2006.05.008

10.1111/1365-2745.12131

10.1111/brv.12328

10.1093/jxb/ert372

10.1111/j.1365-2656.2009.01616.x

10.1073/pnas.1520494113

10.1098/rspb.2020.0972

10.1086/284198

10.1016/j.mad.2020.111377

10.1098/rstb.2019.0744

10.1111/j.1365-2745.2009.01525.x

10.1002/j.1537-2197.1995.tb12673.x

10.1111/1365-2745.12089

10.1111/1365-2435.13461

10.1016/j.exger.2015.08.003

10.1086/663194

10.1111/j.1558-5646.1995.tb04433.x

10.1002/ece3.5477

10.1111/1365-2745.12088

10.1890/ES14-00306.1

10.1016/0169-5347(92)90024-6

10.1007/s10522-011-9333-8

10.1126/science.aao6868

10.1098/rspb.2006.0072

10.1086/284239

10.1111/1365-2656.13382

10.1111/1365-2435.13486

Stearns SC. 1992 The evolution of life histories. Oxford, UK: Oxford University Press.

10.1098/rstb.2019.0727

10.1111/1365-2435.13445

10.1126/science.aax9553

10.1038/40130

10.1098/rspb.2015.1663

10.1111/j.0014-3820.2000.tb00549.x

10.1016/j.jtbi.2015.01.020

10.1073/pnas.1530303100

10.1073/pnas.95.2.600

10.1093/gerona/59.4.B301

10.1098/rspb.2010.1095

10.1098/rstb.2019.0730

10.1017/CBO9781107338357

10.1038/s41467-019-09229-3

10.1086/699513

Downing PA, Griffin AS, Cornwallis CK. 2021 Hard-working helpers contribute to long breeder lifespans in cooperative birds. Proc. R. Soc. B 376, 20190742. (doi:10.1098/rstb.2019.0742)

10.1111/jeb.13308

10.1098/rspb.2010.0988

10.1038/nature04560

10.1098/rsos.160147

10.1017/CBO9781107338357.020

10.1017/CBO9781107338357.016

10.1146/annurev.ecolsys.38.091206.095528

10.1038/s41559-020-1113-x

10.1371/journal.pbio.3000432

10.1111/1365-2435.13399

10.1111/j.1365-2435.2008.01417.x

10.1098/rspb.2015.0209

10.1098/rstb.2019.0729

Roper M, Capdevila P, Salguero-Gómez R. 2021 Senescence: why and where selection gradients might not decline with age. Fighsare.