Semimartingale price systems in models with transaction costs beyond efficient friction

Christoph Kühn1, Alexander Molitor1
1Institut für Mathematik, Goethe-Universität Frankfurt, 60054, Frankfurt a.M., Germany

Tóm tắt

AbstractA standing assumption in the literature on proportional transaction costs is efficient friction. Together with robust no free lunch with vanishing risk, it rules out strategies of infinite variation as they usually appear in frictionless markets. In this paper, we show how the models with and without transaction costs can be unified.The bid and ask prices of a risky asset are given by càdlàg processes which are locally bounded from below and may coincide at some points. In a first step, we show that if the bid–ask model satisfies “no unbounded profit with bounded risk” for simple strategies, then there exists a semimartingale lying between the bid and ask price processes.In a second step, under the additional assumption that the zeros of the bid–ask spread are either starting points of an excursion away from zero or inner points from the right, we show that for every bounded predictable strategy specifying the amount of risky assets, the semimartingale can be used to construct the corresponding self-financing risk-free position in a consistent way. Finally, the set of most general strategies is introduced, which also provides a new view on the frictionless case.

Từ khóa


Tài liệu tham khảo

Bálint, D.Á., Schweizer, M.: Properly discounted asset prices are semimartingales. Math. Financ. Econ. 14, 661–674 (2020)

Beiglböck, M., Schachermayer, W., Veliyev, B.: A direct proof of the Bichteler–Dellacherie theorem and connections to arbitrage. Ann. Probab. 39, 2424–2440 (2011)

Beiglböck, M., Siorpaes, P.: Riemann-integration and a new proof of the Bichteler–Dellacherie theorem. Stoch. Process. Appl. 124, 1226–1235 (2014)

Campi, L., Schachermayer, W.: A super-replication theorem in Kabanov’s model of transaction costs. Finance Stoch. 10, 579–596 (2006)

Chou, C.S., Meyer, P.A., Stricker, C.: Sur les intégrales stochastiques de processus prévisibles non bornés. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIV. Lecture Notes in Mathematics, vol. 784, pp. 128–139. Springer, Berlin (1980)

Cohen, S.N., Elliott, R.J.: Stochastic Calculus and Applications, 2nd edn. Birkhäuser, New York (2015)

Cvitanić, J., Karatzas, I.: Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Finance 6, 113–165 (1996)

Czichowsky, C., Muhle-Karbe, J., Schachermayer, W.: Transaction costs, shadow prices and duality in discrete time. SIAM J. Financ. Math. 5, 258–277 (2014)

Czichowsky, C., Peyre, R., Schachermayer, W., Yang, J.: Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs. Finance Stoch. 22, 161–180 (2018)

Czichowsky, C., Schachermayer, W.: Duality theory for portfolio optimization under proportional transaction costs. Ann. Appl. Probab. 26, 1888–1941 (2016)

Czichowsky, C., Schachermayer, W.: Portfolio optimization beyond semimartingales: shadow prices and fractional Brownian motion. Ann. Appl. Probab. 27, 1414–1451 (2017)

Czichowsky, C., Schachermayer, W., Yang, J.: Shadow prices for continuous processes. Math. Finance 27, 623–658 (2017)

Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

Dellacherie, C., Meyer, P.-A.: Probabilities and Potential B. North-Holland, Amsterdam (1982)

Doob, J.L.: Stochastic process measurability conditions. Ann. Inst. Fourier 25, 163–176 (1975)

Eberlein, E., Kallsen, J.: Mathematical Finance. Springer, Berlin (2019)

Émery, M.: Une topologie sur l’espace des semimartingales. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIII. Lecture Notes in Mathematics, vol. 721, pp. 260–280. Springer, Berlin (1979)

Fraňková, D.: Regulated functions. Math. Bohem. 116, 20–59 (1991)

Guasoni, P.: No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Finance 16, 569–582 (2006)

Guasoni, P., Lépinette, E., Rásonyi, M.: The fundamental theorem of asset pricing under transaction costs. Finance Stoch. 16, 741–777 (2012)

Guasoni, P., Rásonyi, M., Schachermayer, W.: Consistent price systems and face-lifting pricing under transaction costs. Ann. Appl. Probab. 18, 491–520 (2008)

Guasoni, P., Rásonyi, M., Schachermayer, W.: The fundamental theorem of asset pricing for continuous processes under small transaction costs. Ann. Finance 6, 157–191 (2010)

He, S., Wang, J., Yan, J.: Semimartingale Theory and Stochastic Calculus. CRC Press, Boca Raton (1992)

Hildebrandt, T.H.: Definitions of Stieltjes integrals of the Riemann type. Am. Math. Mon. 45, 265–278 (1938)

Jacod, J.: Intégrales stochastiques par rapport à une semimartingale vectorielle et changements de filtration. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIV. Lecture Notes in Mathematics, vol. 784, pp. 161–172. Springer, Berlin (1980)

Jacod, J., Shiryaev, A.N.: Limit Theorems of Stochastic Processes, 2nd edn. Springer, Berlin (2003)

Kabanov, Y., Safarian, M.: Markets with Transaction Costs: Mathematical Theory. Springer, Berlin (2009)

Kabanov, Y., Stricker, C.: Hedging of contingent claims under transaction costs. In: Sandmann, K., Schönbucher, P. (eds.) Advances in Finance and Stochastics. Essays in Honour of Dieter Sondermann, pp. 125–136. Springer, Berlin (2002)

Kallsen, J., Muhle-Karbe, J.: Existence of shadow prices in finite probability spaces. Math. Methods Oper. Res. 73, 251–262 (2011)

Kallsen, J., Muhle-Karbe, J.: On using shadow prices in portfolio optimization with transaction costs. Ann. Appl. Probab. 20, 1341–1358 (2010)

Kardaras, C., Platen, E.: On the semimartingale property of discounted asset-price processes. Stoch. Process. Appl. 121, 2678–2691 (2011)

Kifer, Y.: Game options. Finance Stoch. 4, 443–463 (2000)

Klenke, A.: Probability Theory – A Comprehensive Course, 2nd edn. Springer, Berlin (2014)

Lepeltier, J.-P., Maingueneau, M.A.: Le jeu de Dynkin en théorie générale sans l’hypothèse de Mokobodski. Stochastics 13, 25–44 (1984)

Mikosch, T., Norvaiša, R.: Stochastic integral equations without probability. Bernoulli 6, 401–434 (2000)

Neveu, J.: Discrete-Parameter Martingales. North-Holland, Amsterdam (1975)

Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)

Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14, 19–48 (2004)