Semi-Automatic Identification and Pre-Screening of Geological–Geotechnical Deformational Processes Using Persistent Scatterer Interferometry Datasets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pepe, A., and Calò, F. (2017). A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci., 7.
Shanker, 2011, Comparison of Persistent Scatterers and Small Baseline Time-Series InSAR Results: A Case Study of the San Francisco Bay Area, IEEE Geosci. Remote Sens. Lett., 8, 592, 10.1109/LGRS.2010.2095829
Crosetto, 2016, Persistent Scatterer Interferometry: A review, ISPRS J. Photogramm. Remote Sens., 115, 78, 10.1016/j.isprsjprs.2015.10.011
Ferretti, 2001, Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Remote Sens., 39, 8, 10.1109/36.898661
Ferretti, 2000, Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. Remote Sens., 38, 2202, 10.1109/36.868878
Berardino, 2002, A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375, 10.1109/TGRS.2002.803792
Casu, 2006, A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data, Remote Sens. Environ., 102, 195, 10.1016/j.rse.2006.01.023
Wolf, D., and Fernández, J. (2007). An Overview of the Small BAseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change, Birkhäuser.
Tomás, R., and Li, Z. (2017). Earth Observations for Geohazards: Present and Future Challenges. Remote Sens., 9.
Bianchini, 2018, From Picture to Movie: Twenty Years of Ground Deformation Recording Over Tuscany Region (Italy) with Satellite InSAR, Front. Earth Sci., 6, 177, 10.3389/feart.2018.00177
Samsonov, 2014, Rapidly accelerating subsidence in the Greater Vancouver region from two decades of ERS-ENVISAT-RADARSAT-2 DInSAR measurements, Remote Sens. Environ., 143, 180, 10.1016/j.rse.2013.12.017
Herrera, 2013, Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees), Remote Sens. Environ., 128, 31, 10.1016/j.rse.2012.09.020
Cignetti, M., Manconi, A., Manunta, M., Giordan, D., De Luca, C., Allasia, P., and Ardizzone, F. (2016). Taking Advantage of the ESA G-POD Service to Study Ground Deformation Processes in High Mountain Areas: A Valle d’Aosta Case Study, Northern Italy. Remote Sens., 8.
Raucoules, 2007, Use of SAR interferometry for detecting and assessing ground subsidence, C. R. Geosci., 339, 289, 10.1016/j.crte.2007.02.002
Costantini, 2017, Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data, Remote Sens. Environ., 202, 250, 10.1016/j.rse.2017.07.017
Romero, 2014, Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain, Environ. Earth Sci., 71, 163, 10.1007/s12665-013-2422-z
Barra, A., Solari, L., Béjar-Pizarro, M., Monserrat, O., Bianchini, S., Herrera, G., Crosetto, M., Sarro, R., González-Alonso, E., and Mateos, R. (2017). A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images. Remote Sens., 9.
Meisina, 2008, Geological Interpretation of PSInSAR Data at Regional Scale, Sensors, 8, 7469, 10.3390/s8117469
Bianchini, 2012, Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry, Environ. Earth Sci., 67, 1155, 10.1007/s12665-012-1559-5
Zhao, 2012, Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA, Remote Sens. Environ., 124, 348, 10.1016/j.rse.2012.05.025
Raspini, 2018, Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites, Sci. Rep., 8, 7253, 10.1038/s41598-018-25369-w
Solari, 2018, Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data, Geomat. Nat. Hazards Risk, 9, 152, 10.1080/19475705.2017.1413013
Ardizzone, 2014, Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy, Remote Sens. Environ., 142, 69, 10.1016/j.rse.2013.11.003
Navarro, J.A., Cuevas, M., Tomás, R., Barra, A., and Crosetto, M. (2019, January 3–5). A toolset to detect and classify Active Deformation Areas using interferometric SAR data. Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management, Heraklion, Crete, Greece.
Navarro, J.A., Cuevas, M., Barra, A., and Crosetto, M. (2018, January 24–27). Detection of Active Deformation Areas based on Sentinel-1 imagery: An efficient, fast and flexible implementation. Proceedings of the 18th International Scientific and Technical Conference, Crete, Greece.
Notti, 2014, A methodology for improving landslide PSI data analysis, Int. J. Remote Sens., 35, 2186, 10.1080/01431161.2014.889864
He, 2015, Mapping Two-Dimensional Deformation Field Time-Series of Large Slope by Coupling DInSAR-SBAS with MAI-SBAS, Remote Sens., 7, 12440, 10.3390/rs70912440
Turner, A.K., and Schuster, R.L. (1996). Landslide types and processes. Landslides: Investigation and Mitigation, Academy Press. National Research Council, Transportation and Research Board Special Report.
Lee, 2004, Determination and application of the weights for landslide susceptibility mapping using an artificial neural network, Eng. Geol., 71, 289, 10.1016/S0013-7952(03)00142-X
Ayalew, 2005, The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65, 15, 10.1016/j.geomorph.2004.06.010
Rosi, 2018, The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution, Landslides, 15, 5, 10.1007/s10346-017-0861-4
Rosi, 2016, Subsidence mapping at regional scale using persistent scatters interferometry (PSI): The case of Tuscany region (Italy), Int. J. Appl. Earth Obs. Geoinf., 52, 328
Stucchi, 2017, SH-wave seismic reflection at a landslide (Patigno, NW Italy) integrated with P-wave, J. Appl. Geophys., 146, 188, 10.1016/j.jappgeo.2017.09.011
Del Soldato, M., Solari, L., Poggi, F., Raspini, F., Tomás, R., Fanti, R., and Casagli, N. (2019). Landslide-Induced Damage Probability Estimation Coupling InSAR and Field Survey Data by Fragility Curves. Remote Sens., 11.
Barazzuoli, 1999, Olocenic alluvial aquifer of the River Cornia coastal plain (southern Tuscany, Italy): Database design for groundwater management, Environ. Geol., 39, 123, 10.1007/s002540050443
Coltorti, 2011, The sagging deep-seated gravitational movements on the eastern side of Mt. Amiata (Tuscany, Italy), Nat. Hazards, 59, 191, 10.1007/s11069-011-9746-3
Ferretti, 2011, A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR, IEEE Trans. Geosci. Remote Sens., 49, 3460, 10.1109/TGRS.2011.2124465
Del Soldato, M., Farolfi, G., Rosi, A., Raspini, F., and Casagli, N. (2018). Subsidence Evolution of the Firenze–Prato–Pistoia Plain (Central Italy) Combining PSI and GNSS Data. Remote Sens., 10.
Tuscany Region (2019, April 02). CORINE Land Cover. Available online: http://www502.regione.toscana.it/geoscopio/usocoperturasuolo.html.