Self‐healing materials: what can nature teach us?

Fatigue and Fracture of Engineering Materials and Structures - Tập 40 Số 5 - Trang 655-669 - 2017
Cornelius P. Dooley1, David Taylor2
1Advanced Microscopy Laboratory, Trinity College Dublin The University of Dublin Dublin Ireland
2Trinity Centre for Bioengineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland

Tóm tắt

AbstractNatural materials such as bone and insect cuticle are capable of self‐repair, a facility that greatly increases their durability and safe working stress. Some engineering materials have also been designed to be self‐healing, although currently they cannot match the performance of natural materials as regards the efficiency and longevity of the healing process. In this paper, we review the state of the art regarding these two types of materials. We discuss the role of fracture mechanics in the development of theoretical models of self‐healing; we identify certain crucial parameters that make natural materials successful and discuss how these lessons can be applied to improve the performance of self‐healing materials for engineering applications.

Từ khóa


Tài liệu tham khảo

10.1002/biuz.201510558

10.1515/9781400849505

10.1098/rsif.2012.0567

Taylor D., 2008, Bone as a structural material: how good is it?, Stud. Health Technol. Inform., 133, 221

10.1016/j.actbio.2016.04.028

10.1016/j.jmps.2006.07.007

10.1016/j.bone.2004.07.016

10.1002/adhm.201500070

10.1016/j.matlet.2016.07.126

Wigglesworth V. B., 1937, Wound healing in an insect (Rhodnius proxilus hemiptera), J. Exp. Biol., 14, 364, 10.1242/jeb.14.3.364

10.1002/jmor.1051240104

10.1002/jmor.1051300304

10.1098/rsif.2015.0984

10.1007/BF00377065

10.1371/journal.pone.0046341

10.1016/S1385-1101(98)00042-2

10.1007/BF00393053

Ulstrup K. A., 2008, Biomechanical concepts of fracture healing in weight‐bearing long bones, Acta Orthop. Belg., 74, 291

Frost H. M., 1960, Presence of microscopic cracks in vivo in bone, Henry Ford Hosp. Med. Bull., 8, 25

10.1016/S0021-9290(98)00133-X

10.1016/S0021-9290(03)00066-6

10.1038/nmat1866

10.1007/s12018-008-9015-5

10.1016/S8756-3282(01)00619-6

10.1016/j.bone.2004.05.024

10.1111/j.1474-9726.2010.00633.x

10.1055/s-0037-1619006

10.1016/j.msec.2010.12.006

Wang L., 2014, Repair of microdamage in osteonal cortical bone adjacent to bone screw, PLoS One, 9

10.1016/j.orthres.2004.08.005

10.1016/j.msec.2016.01.061

10.1016/S0021-9290(01)00025-2

10.1002/jor.1100140618

10.1016/j.bone.2010.07.026

10.1021/nn401360u

10.1016/j.bone.2012.01.025

10.1016/j.bone.2014.03.049

10.1016/j.bone.2010.09.014

10.22203/eCM.v030a19

Dooley C.(2013)Targeted bone remodelling: investigating the scissors model. PhD thesis. Trinity College Dublin The University of Dublin.

10.1007/s10237-011-0349-4

10.22203/eCM.v027a04

Mofrad R. K., 2010, Cellular Mechanotransduction

10.1016/j.jbiomech.2015.10.018

10.1016/j.msec.2014.08.036

10.1016/j.bone.2015.03.014

10.1007/978-94-007-6624-2

10.1016/j.ijfatigue.2016.06.028

10.1111/ffe.12175

10.1046/j.1460-2695.1999.00210.x

10.1016/j.icheatmasstransfer.2009.03.014

10.1016/j.actamat.2013.08.015

10.1038/35057232

10.1021/cm302501b

10.1080/10255840802502591

10.1177/1056789515586839

10.1249/MSS.0b013e3181a984c4

10.1016/j.orthres.2003.08.022

10.1115/1.4003754

10.1016/j.engfracmech.2016.06.010

10.1023/A:1020843922222

10.1016/j.jtbi.2012.03.027

Taylor D., 2007, The Theory of Critical Distances: A New Perspective in Fracture Mechanics

10.1002/adfm.201101100

10.1021/acsami.6b05390

10.1002/adma.200600977

10.1016/j.conbuildmat.2011.06.054

Das S.andChakravarty S.(2013)Characterization of micro‐anomalies from macro‐scale response. 2013. 54th AIAA/ASME/ASCE/AHS/ASC Structures Structural Dynamics and Materials Conference 8th January Boston USA.