Self-assembly of amphiphilic Janus spheres using the lattice Boltzmann method

Springer Science and Business Media LLC - Tập 9 - Trang 67-83 - 2021
Gaurav Nath1, Bahni Ray1, Jayati Sarkar2
1Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, India
2Chemical Engineering Department, Indian Institute of Technology Delhi, New Delhi, India

Tóm tắt

We discuss the relevance of the lattice Boltzmann method (LBM) for soft matter alongside other simulation methods. We set up a popular problem of self-assembly of Janus spheres by combining native fluid and particle models in LBM with a simple amphiphilic pair potential. Thermal fluctuations and close contact corrections are also incorporated along with a novel periodic boundary condition for finite-sized 3D particles. Preliminary results of Janus sphere self-assembly are presented and compared with similar works in the literature. We also comment on the difficulties that LBM faces tackling such problems.

Tài liệu tham khảo

Jones RA (2002) Soft condensed matter, vol 6. Oxford University Press, Oxford Dünweg B, Ladd AJ (2009) Lattice Boltzmann simulations of soft matter systems. In: Advanced computer simulation approaches for soft matter sciences III. Springer, pp 89–166 Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341 Zeng Q, Yu A, Lu G (2008) Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33(2):191–269 Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1360 De Corato M, Slot J, Hütter M, D’Avino G, Maffettone PL, Hulsen MA (2016) Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes. J Comput Phys 316:632–651 Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys Lett) 19(3):155 Malevanets A, Kapral R (1999) Mesoscopic model for solvent dynamics. J Chem Phys 110(17):8605–8613 Landau LD, Lifshitz EM (1959) Fluid mechanics. Course of theoretical physics. Pergamon Press, Oxford Atzberger PJ (2011) Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations. J Comput Phys 230(8):2821–2837 Sharma N, Patankar NA (2004) Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations. J Comput Phys 201(2):466–486 Patankar NA (2002) Direct numerical simulation of moving charged, flexible bodies with thermal fluctuations. In: Technical proceedings of the 2002 international conference on computational nanoscience and nanotechnology, nano science and technology institute, vol 2, pp 93–96 Serrano M, Espanol P (2001) Thermodynamically consistent mesoscopic fluid particle model. Phys Rev E 64(4):046,115 Espanol P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):026,705 Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett 56(14):1505 Espanol P, Warren PB (2017) Perspective: dissipative particle dynamics. J Chem Phys 146(15):150,901 Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen E (2016) The lattice Boltzmann method: principles and practice. Graduate texts in physics. Springer, Berlin Rosenthal G, Gubbins KE, Klapp SH (2012) Self-assembly of model amphiphilic Janus particles. J Chem Phys 136(17):174,901 Rosenthal G, Klapp SH (2012) Micelle and bilayer formation of amphiphilic Janus particles in a slit-pore. Int J Mol Sci 13(8):9431–9446 Chen Q, Whitmer JK, Jiang S, Bae SC, Luijten E, Granick S (2011) Supracolloidal reaction kinetics of Janus spheres. Science 331(6014):199–202 Hong L, Cacciuto A, Luijten E, Granick S (2008) Clusters of amphiphilic colloidal spheres. Langmuir 24(3):621–625 Sciortino F, Giacometti A, Pastore G (2009) Phase diagram of Janus particles. Phys Rev Lett 103(23):237,801 Erdmann T, Kröger M, Hess S (2003) Phase behavior and structure of Janus fluids. Phys Rev E 67(4):041,209 Kobayashi Y, Arai N (2015) Self-assembly of Janus nanoparticles with a hydrophobic hemisphere in nanotubes. Soft Matter 12(2):378–385 Kobayashi Y, Arai N (2017) Self-assembly and viscosity behavior of Janus nanoparticles in nanotube flow. Langmuir 33(3):736–743 Arai N, Yasuoka K, Zeng XC (2012) Nanochannel with uniform and Janus surfaces: shear thinning and thickening in surfactant solution. Langmuir 28(5):2866–2872 Bianchi E, Panagiotopoulos AZ, Nikoubashman A (2015) Self-assembly of Janus particles under shear. Soft Matter 11(19):3767–3771 Kobayashi Y, Arai N, Nikoubashman A (2020) Structure and dynamics of amphiphilic Janus spheres and spherocylinders under shear. Soft Matter 16:476–486 Rosenthal G, Klapp SH (2011) Ordering of amphiphilic Janus particles at planar walls: a density functional study. J Chem Phys 134(15):154,707 Alarcon F, Navarro-Argemí E, Valeriani C, Pagonabarraga I (2019) Orientational order and morphology of clusters of self-assembled Janus swimmers. Phys Rev E 99(6):062,602 Shen Z, Würger A, Lintuvuori JS (2019) Hydrodynamic self-assembly of active colloids: chiral spinners and dynamic crystals. Soft Matter 15(7):1508–1521 Ladd AJ (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–309 Galindo-Torres S (2013) A coupled discrete element lattice Boltzmann method for the simulation of fluid-solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265:107–119 Xie Q, Günther F, Harting J (2016) Mesoscale simulations of anisotropic particles at fluid-fluid interfaces. In: High performance computing in science and engineering’ 15. Springer, Berlin, pp 565–577 Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511 d’Humieres D (1992) Generalized lattice-Boltzmann equations. Rarefied gas dynamics Chun B, Ladd A (2007) Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Phys Rev E 75(6):066,705 d’Humieres D (2002) Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360(1792):437–451 Schiller UD (2008) Thermal fluctuations and boundary conditions in the lattice Boltzmann method. PhD thesis, Johannes Gutenberg Universität Mainz Adhikari R, Stratford K, Cates M, Wagner A (2005) Fluctuating lattice Boltzmann. EPL (Europhys Lett) 71(3):473 Aidun CK, Lu Y (1995) Lattice Boltzmann simulation of solid particles suspended in fluid. J Stat Phys 81(1–2):49–61 Ladd A, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104(5–6):1191–1251 Wang M, Feng Y, Wang Y, Zhao T (2017) Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling. Granul Matter 19(3):43 Ding EJ, Aidun CK (2003) Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J Stat Phys 112(3–4):685–708 Nguyen NQ, Ladd A (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66(4):046,708 Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42:439–472 Rosenthal G (2012) Theory and computer simulations of amphiphilic Janus particles. PhD thesis, Technical University of Berlin Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol 1. Elsevier, Amsterdam Murray R, Li Z, Sastry S, Sastry S (1994) A mathematical introduction to robotic manipulation. Taylor & Francis, Milton Park Pathria R, Beale P (1996) Statistical mechanics. Butterworth-Heinemann, Oxford Allen M, Tildesley D (1989) Computer simulation of liquids. Oxford Science Publ, Clarendon Press, Oxford Feng ZG, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys 195(2):602–628