Self-assembly and chemical processing of block copolymers: a roadmap towards a diverse array of block copolymer nanostructures
Springer Science and Business Media LLC - Trang 1-27 - 2013
Tóm tắt
Block copolymers can yield a diverse array of nanostructures. Their assembly structures are influenced by their inherent structures, and the wide variety of structures that can be prepared especially becomes apparent when one considers the number of routes available to prepare block copolymer assemblies. Some examples include self-assembly, directed assembly, coupling, as well as hierarchical assembly, which can yield assemblies having even higher structural order. These assembly routes can also be complemented by processing techniques such as selective crosslinking and etching, the former technique leading to permanent structures, the latter towards sculpted and the combination of the two towards permanent sculpted structures. The combination of these pathways provides extremely versatile routes towards an exciting variety of architectures. This review will attempt to highlight destinations reached by LIU Guojun and coworkers following these pathways.
Tài liệu tham khảo
Khandpur AK, Foerster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules, 1995, 28(26): 8796–8806
Bates FS, Fredrickson GH. Block copolymers—designer soft materials. Phys Today, 1999, 52(2): 32–38
Leibler L. Theory of microphase separation in block copolymers. Macromolecules, 1980, 13(6): 1602–1617
Matsen MW, Bates FS. Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 1996, 29(4): 1091–1098
Bates FS, Fredrickson GH. Block copolymer thermodynamics: Theory and experiment. Annu Rev Phys Chem, 1990, 41: 525–557
Matsen MW, Bates FS. Origins of complex self-assembly in block copolymers. Macromolecules, 1996, 29(23): 7641–7644
Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A. Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci, 2005, 30(7): 725–782
Moughton AO, Hillmyer MA, Lodge TP. Multicompartment block polymer micelles. Macromolecules, 2012, 45(1): 2–19
Schacher F, Reinicke S, Walther A, Schmalz H, Müller AHE. New amphiphilic nanostructures based on block terpolymers made by anionic polymerization. NATO Sci Peace Secur Ser A Chem Biol, 2009, 3: 167–186
Wyman IW, Liu G. Micellar structures of linear triblock terpolymers: Three blocks but many possibilities. Polymer, 2013, 54(8): 1950–1978
Olsen BD, Segalman RA. Self-assembly of rod-coil block copolymers. Mater Sci Eng, R, 2008, 62(2): 37–66
Whitesides GM, Grzybowski B. Self-assembly at all scales. Science, 2002, 295(5564): 2418–2421
Abetz V, Simon PFW. Phase behaviour and morphologies of block copolymers. Adv Polym Sci, 2005, 189: 125–212
Morkved TL, Lu M, Urbas AM, Ehrichs EE, Jaeger HM, Mansky P, Russell TP. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science, 1996, 273(5277): 931–933
Boker A, Knoll A, Elbs H, Abetz V, Müller AHE, Krausch G. Large scale domain alignment of a block copolymer from solution using electric fields. Macromolecules, 2002, 35(4): 1319–1325
Böker A: Control of block copolymer microdomain orientation from solution using electric fields: Governing parameters and mechanisms. In Nanostructured soft matter; Zvelindovsky A V, Ed.; Springer: Dordrecht, 2007; pp 199–229
Kim H, Jeong SM, Park JW. Electrical switching between vesicles and micelles via redox-responsive self-assembly of amphiphilic rod-coils. J Am Chem Soc, 2011, 133(14): 5206–5209
Lee SJ, Park MJ. Morphological manipulation of ionic block copolymer micelles using an electric field. Langmuir, 2010, 26(23): 17827–17830
Giacomelli FC, da Silveira NP, Nallet F, Cernoch P, Steinhart M, Stepanek P. Cubic to hexagonal phase transition induced by electric field. Macromolecules, 2010, 43(9): 4261–4267
Majewski PW, Gopinadhan M, Jang WS, Lutkenhaus JL, Osuji CO. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J Am Chem Soc, 2010, 132(49): 17516–17522
McCulloch B, Portale G, Bras W, Segalman RA. Increased order-disorder transition temperature for a rod-coil block copolymer in the presence of a magnetic field. Macromolecules, 2011, 44(19): 7503–7507
Tao Y, Zohar H, Olsen BD, Segalman RA. Hierarchical nanostructure control in rod-coil block copolymers with magnetic fields. Nano Lett, 2007, 7(9): 2742–2746
Wyman I, Njikang G, Liu G. When emulsification meets self-assembly: The role of emulsification in directing block copolymer assembly Prog Polym Sci, 2011, 36(9): 1152–1183
Cheng JY, Ross CA, Smith HI, Thomas EL. Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv Mater, 2006, 18(19): 2505–2521
Shum HC, Weitz DA. Multicompartment polymersome gel for encapsulation. Soft Matter, 2011, 7(19): 8762–8765
Wang CW, Sinton D, Moffitt MG. Flow-directed block copolymer micelle morphologies via microfluidic self-assembly. J Am Chem Soc, 2011, 133(46): 18853–18864
Lin Y, Daga VK, Anderson ER, Gido SP, Watkins JJ. Nanoparticle-driven assembly of block copolymers: A simple route to ordered hybrid materials. J Am Chem Soc, 2011, 133(17): 6513–6516
Bae KH, Choi SH, Park SY, Lee Y, Park TG. Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Langmuir, 2006, 22(14): 6380–6384
Cai Y, Aubrecht KB, Grubbs RB. Thermally induced changes in amphiphilicity drive reversible restructuring of assemblies of abc triblock copolymers with statistical polyether blocks. J Am Chem Soc, 2011, 133(4): 1058–1065
Schmelz J, Karg M, Hellweg T, Schmalz H. General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano, 2011, 5(12): 9523–9534
Darling SB. Directing the self-assembly of block copolymers. Prog Polym Sci, 2007, 32(10): 1152–1204
Segalman RA. Patterning with block copolymer thin films. Mater Sci Eng R, 2005, 48(6): 191–226
Herr DJC. Directed block copolymer self-assembly for nanoelec-tronics fabrication. J Mater Res, 2011, 26(2): 122–139
Zhang J, Yu X, Yang P, Peng J, Luo C, Huang W, Yanchun Han Y. Microphase separation of block copolymer thin films. Macromol Rapid Commun, 2010, 31(7): 591–608
Lu Z, Liu G, Liu F. Block copolymer microspheres containing intricate nanometer-sized segregation patterns. Macromolecules, 2001, 34(25): 8814–8817
Yabu H, Higuchi T, Ijiro K, Shimomura M. Spontaneous formation of polymer nanoparticles by good-solvent evaporation as a nonequilibrium process. Chaos, 2005, 15(4): 047505–047507
Hamley IW. Ordering in thin films of block copolymers: Fundamentals to potential applications. Prog Polym Sci, 2009, 34(11): 1161–1210
Tsarkova L, Sevink GJA, Krausch G. Nanopattern evolution in block copolymer films: Experiment, simulations and challenges. Adv Polym Sci, 2010, 227: 33–73
Albert JNL, Epps TH. Self-assembly of block copolymer thin films. Mater Today, 2010, 13(6): 24–33
Fasolka MJ, Mayes AM. Block copolymer thin films: Physics and applications. Annual Review of Materials Research, 2001, 31(1): 323–355
Green PF, Limary R. Block copolymer thin films: Pattern formation and phase behavior. Adv Colloid Interface Sci, 2001, 94(1–3): 53–81
Riess G. Micellization of block copolymers Prog Polym Sci, 2003, 28(7): 1107–1170
Zhang L, Eisenberg A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science, 1995, 268(5218): 1728–1731
Zhang L, Eisenberg A. Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc, 1996, 118(13): 3168–3181
Walther A, Muller AHE. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem Rev, 2013, http://dx.doi.org/10.1021/cr300089t
Guo A, Liu G, Tao J. Star polymers and nanospheres from cross-linkable diblock copolymers. Macromolecules, 1996, 29(7): 2487–2493
Tao J, Liu G, Ding J, Yang M. Cross-linked nanospheres of poly(2-cinnamoylethyl methacrylate) with immediately attached surface functional groups. Macromolecules, 1997, 30(14): 4084–4089
Ding J, Liu G. Hairy, semi-shaved, and fully shaved hollow nano-spheres from polyisoprene-block-poly(2-cinnamoylethyl methacrylate). Chem Mater, 1998, 10(2): 537–542
Hu J, Liu G, Nijkang G. Hierarchical interfacial assembly of abc triblock copolymer. J Am Chem Soc, 2008, 130(11): 3236–3237
Lu Z, Liu G, Liu F. Water-dispersible porous polyisoprene-block-poly(acrylic acid) microspheres. J Appl Polym Sci, 2003, 90(10): 2785–2793
Liu G, Yang H, Zhou J, Law S-J, Jiang Q, Yang G. Preparation of magnetic microspheres from water-in-oil emulsion stabilized by block copolymer dispersant. Biomacromolecules, 2005, 6(3): 1280–1288
Underhill RS, Liu G. Triblock nanospheres and their use as templates for inorganic nanoparticle preparation. Chem Mater, 2000, 12(8): 2082–2091
Li Z, Liu G, Law S-J, Sells T. Water-soluble fluorescent diblock nanospheres. Biomacromolecules, 2002, 3(5): 984–990
Zheng R, Liu G, Yan X. Polymer nano- and microspheres with bumpy and chain-segregated surfaces. J Am Chem Soc, 2005, 127(44): 15358–15359
Zhou Z, Liu G, Hong L. Water-dispersible superparamagnetic microspheres adorned with two types of surface chains. Biomacromolecules, 2011, 12(3): 813–823
Ding J, Liu G. Polyisoprene-block-poly(2-cinnamoylethyl methacrylate) vesicles and their aggregates. Macromolecules, 1997, 30(3): 655–657
Zheng R, Liu G. Water-dispersible oil-filled abc triblock copolymer vesicles and nanocapsules. Macromolecules, 2007, 40(14): 5116–5121
Tao J, Liu G. Polystyrene-block-poly(2-cinnamoylethyl methacrylate) tadpole molecules. Macromolecules, 1997, 30(8): 2408–2411
Njikang G, Liu G, Curda SA. Tadpoles from the intramolecular photo-cross-linking of diblock copolymers. Macromolecules, 2008, 41(15): 5697–5702
Njikang G, Liu G, Hong L. Chiral imprinting of diblock copolymer single-chain particles. Langmuir, 2011, 27(11): 7176–7184
Hu J, Zheng R, Wang J, Hong L, Liu G. Macrocycles from the photochemical coupling of preassociated terminal blocks of block copolymers. Macromolecules, 2009, 42(13): 4638–4645
Liu G, Qiao L, Guo A. Diblock copolymer nanofibers. Macromolecules, 1996, 29(16): 5508–5510
Tao J, Stewart S, Liu G, Yang M. Star and cylindrical micelles of polystyrene-block-poly(2-cinnamoylethyl methacrylate) in cyclopentane. Macromolecules, 1997, 30(9): 2738–2745
Stewart S, Liu G. Block copolymer nanotubes. Angew Chem Int Ed, 2000, 39(2): 340–344
Yan X, Liu F, Li Z, Liu G. Poly(acrylic acid)-lined nanotubes of poly(butyl methacrylate)-block-poly(2-cinnamoyloxyethyl metha-crylate). Macromolecules, 2001, 34(26): 9112–9116
Liu G, Ding J, Guo A, Herfort M, Bazett-Jones D. Potential skin layers for membranes with tunable nanochannels. Macromolecules, 1997, 30(6): 1851–1853
Liu G, Ding J. Diblock thin films with densely hexagonally packed nanochannels. Adv Mater, 1998, 10(1): 69–71
Liu G, Ding J, Hashimoto T, Kimishima K, Winnik FM, Nigam S. Thin films with densely, regularly packed nanochannels: Preparation, characterization, and applications. Chem Mater, 1999, 11(8): 2233–2240
Liu G, Ding J, Stewart S. Preparation and properties of nanoporous triblock copolymer membranes. Angew Chem Int Ed, 1999, 38(6): 835–838
Dou H, Hong L, Liu G. Miktoarm star copolymers from the chemical stitching of associating block copolymers. Macromolecules, 2010, 43(10): 4629–4637
Hu J, Njikang G, Liu G. Twisted abc triblock copolymer cylinders with segregated a and c coronal chains. Macromolecules, 2008, 41(21): 7993–7999
Dupont J, Liu G, Niihara K-i, Kimoto R, Jinnai H. Self-assembled abc triblock copolymer double and triple helices. Angew Chem Int Ed, 2009, 48(33): 6144–6147
Dou H, Liu G, Dupont J, Hong L. Triblock terpolymer helices self-assembled under special solvation conditions. Soft Matter, 2010, 6(17): 4214–4222
Liu G, Hu N, Xu X, Yao H. Cross-linked polymer brushes. 1. Synthesis of poly[p-(vinyloxy)ethyl cinnamate]-b-poly (isobutylvinyl ether). Macromolecules, 1994, 27(14): 3892–3895
Dupont J, Liu G. Abc triblock copolymer hamburger-like micelles, segmented cylinders, and janus particles. Soft Matter, 2010, 6(15): 3654–3661
Stewart S, Liu G. Hollow nanospheres from polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chem Mater, 1999, 11(4): 1048–1054
Henselwood F, Liu G. Water-soluble nanospheres of poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid). Macromo-lecules, 1997, 30(3): 488–493
Henselwood F, Wang G, Liu G. Removal of perylene from water using block copolymer nanospheres or micelles. J Appl Polym Sci, 1998, 70(2): 397–408
Lu Z, Liu G, Phillips H, Hill JM, Chang J, Kydd RA. Palladium nanoparticle catalyst prepared in poly(acrylic acid)-lined channels of diblock copolymer microspheres. Nano Lett, 2001, 1(12): 683–687
Xiong D, Liu G, Zhang J, Duncan S. Bifunctional core-shell-corona particles for amphiphobic coatings. Chem Mater, 2011, 23(11): 2810–2820
Xiong D, Liu G, Hong L, Duncan EJS. Superamphiphobic diblock copolymer coatings. Chem Mater, 2011, 23(19): 4357–4366
Zheng R, Wang J, Liu G, Jao T-C. Lubricant-oil-dispersible stainless-steel-binding block copolymer nanoaggregates and nanospheres. Macromolecules, 2007, 40(21): 7601–7608
Zheng R, Liu G, Devlin M, Hux K, Jao T-c. Friction reduction of lubricant base oil by micelles and crosslinked micelles of block copolymers. Tribol Trans, 2010, 53(1): 97–107
Liu G. Functional crosslinked nanostructures from block copolymers. Mater Sci Eng C, 1999, 10(1-2): 159–164
Whitesides GM, Boncheva M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci, USA, 2002, 99(8): 4769–4774
Matsen MW, Schick M. Self-assembly of block copolymers. Curr Opin Colloid Interface Sci, 1996, 1(3): 329–336
Matsen MW. Self-assembly of block copolymers in thin films. Curr Opin Colloid Interface Sci, 1998, 3(1): 40–47
Giacomelli C, Borsali R: Disordered phase and self-organization of block copolymer systems. In Soft matter characterization; Borsali R, Pecora R, Eds.; Springer Science + Business Media, LLC: New York, 2008; pp 133–189.
Giacomelli C, Schmidt V, Aissou K, Borsali R. Block copolymer systems: From single chain to self-assembled nanostructures. Langmuir, 2010, 26(20): 15734–15744
Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM. Directed self-assembly of nanoparticles. ACS Nano, 2010, 4(7): 3591–3605
Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci, 2010, 35(9): 1128–1143
Harada A, Kataoka K. Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog Polym Sci, 2006, 31(11): 949–982
Hirao A, Hayashi M, Loykulnant S, Sugiyama K, Ryu SW, Haraguchi N, Matsuo A, Higashihara T. Precise syntheses of chain-multi-functionalized polymers, star-branched polymers, star-linear block polymers, densely branched polymers, and dendritic branched polymers based on iterative approach using functionalized 1,1-diphenylethylene derivatives Prog Polym Sci, 2005, 30(2): 111–182
Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci, 2006, 31(12): 1068–1132
Wyman I, Liu G. Architectural polymers, nanostructures, and hierarchical structures from block copolymers. In Complex macromolecular architectures; Hadjichristidis N, Hirao A, Tezuka Y, Du Prez F, Eds.; John Wiley & Sons (Asia) Pte Ltd: Singapore, 2011; pp 739–761
Liu G. Nanofibers. Adv Mater, 1997, 9(5): 437–439
Zhou J, Li Z, Liu G. Diblock copolymer nanospheres with porous cores. Macromolecules, 2002, 35(9): 3690–3696
Liu G. Block copolymer nanotubes derived from self-assembly. Adv Polym Sci, 2008, 220: 29–64
Wang G, Henselwood F, Liu G. Water-soluble poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid) nanospheres as traps for perylene. Langmuir, 1998, 14(7): 1554–1559
Zhou Z, Liu G, Han D. Coating and structural locking of dipolar chains of cobalt nanoparticles. ACS Nano, 2009, 3(1): 165–172
Liu G, Yan X, Li Z, Zhou J, Duncan S. End coupling of block copolymer nanotubes to nanospheres. J Am Chem Soc, 2003, 125(46): 14039–14045
Yan X, Liu G, Li Z. Preparation and phase segregation of block copolymer nanotube multiblocks. J Am Chem Soc, 2004, 126(32): 10059–10066
Cameron NS, Corbierre MK, Eisenberg A. 1998 e.W.R. Steacie award lecture asymmetric amphiphilic block copolymers in solution: A morphological wonderland. Can J Chem, 1999, 77(8): 1311–1326
Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev, 2012, 41(18): 5969–5985
Tuzar Z, Kratochvil P. Block and graft copolymer micelles in solution. Adv Colloid Interface Sci, 1976, 6: 201–232
Mortensen K. Structural properties of self-assembled polymeric micelles. Curr Opin Colloid Interface Sci, 1998, 3(1): 12–19
Zhulina EB, Borisov OV. Theory of block polymer micelles: Recent advances and current challenges. Macromolecules, 2012, 45(11): 4429–4440
Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J Control Release, 2005, 109(1-3): 169–188
Chen Y. Shaped hairy polymer nanoobjects. Macromolecules, 2012, 45(6): 2619–2631
Njikang G, Han D, Wang J, Liu G. Abc triblock copolymer micelle-like aggregates in selective solvents for a and c. Macromolecules, 2008, 41(24): 9727–9735
Luo L, Eisenberg A. One-step preparation of block copolymer vesicles with preferentially segregated acidic and basic corona chains. Angew Chem Int Ed, 2002, 41(6): 1001–1004
Gohy JF, Khousakoun E, Willet N, Varshney SK, Jerome R. Segregation of coronal chains in micelles formed by supramolecular interactions. Macromol Rapid Commun, 2004, 25(17): 1536–1539
Zhang W, Shi L, An Y, Gao L, He B. Unimacromolucule exchange between bimodal micelles self-assembled by polystyrene-block-poly(acrylic acid) and polystyrene-block-poly(amino propylene-glycol methacrylate) in water. J Phys Chem B, 2003, 108(1): 200–204
Xiong Da, He Z, An Y, Li Z, Wang H, Chen X, Shi L. Temperature-responsive multilayered micelles formed from the complexation of pnipam-b-p4vp block-copolymer and ps-b-paa core-shell micelles. Polymer, 2008, 49(10): 2548–2552
Chang C, Wei H, Li Q, Yang B, Chen N, Zhou J-P, Zhang X-Z, Zhuo RX. Construction of mixed micelle with cross-linked core and dual responsive shells. Polym Chem, 2011, 2(4): 923–930
Gohy JF, Varshney SK, Jerome R. Water-soluble complexes formed by poly(2-vinylpyridinium)-block-poly(ethylene oxide) and poly(sodium methacrylate)-block-poly(ethylene oxide) copolymers. Macromolecules, 2001, 34(10): 3361–3366
Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules, 1995, 28(15): 5294–5299
Harada A, Kataoka K. Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers. Science, 1999, 283(5398): 65–67
Petrov P, Tsvetanov CB, Jeronme R. Stabilized mixed micelles with a temperature-responsive core and a functional shell. J Phys Chem B, 2009, 113(21): 7527–7533
Gao WP, Bai Y, Chen EQ, Li ZC, Han BY, Yang W-T, Zhou Q-F. Controlling vesicle formation via interpolymer hydrogen-bonding complexation between poly(ethylene oxide)-block-polybutadiene and poly(acrylic acid) in solution. Macromolecules, 2006, 39(14): 4894–4898
Weaver JVM, Armes SP, Liu S. A “holy trinity” of micellar aggregates in aqueous solution at ambient temperature: Unprecedented self-assembly behavior from a binary mixture of a neutral-cationic diblock copolymer and an anionic polyelectrolyte. Macromolecules, 2003, 36(26): 9994–9998
Gohy J-F, Varshney SK, Jerome R. Morphology of water-soluble interpolyelectrolyte complexes formed by poly(2-vinylpyridinium)-block-poly(ethylene oxide) diblocks and poly(4-styrenesulfonate) polyanions. Macromolecules, 2001, 34(9): 2745–2747
Pispas S. Complexes of polyelectrolyte-neutral double hydrophilic block copolymers with oppositely charged surfactant and polyelectrolyte. J Phys Chem B, 2007, 111(29): 8351–8359
Attia ABE, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, Yang YY. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci, 2011, 16(3): 182–194
Lefèvre N, Fustin CA, Gohy J-F. Polymeric micelles induced by interpolymer complexation. Macromol Rapid Commun, 2009, 30(22): 1871–1888
Hu J, Liu G. Chain mixing and segregation in b-c and c-d diblock copolymer micelles. Macromolecules, 2005, 38(19): 8058–8065
Yan X, Liu G, Hu J, Wilson CG. Coaggregation of b-c and d-c diblock copolymers with h-bonding c blocks in block-selective solvents. Macromolecules, 2006, 39(5): 1906–1912
Li Z, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP. Multicompartment micelles from abc miktoarm stars in water. Science, 2004, 306(5693): 98–101
Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A. Spontaneous formation of vesicles from complexes of block ionomers and surfactants. J Am Chem Soc, 1998, 120(38): 9941–9942
Bronich TK, Kabanov AV, Kabanov VA, Yu K, Eisenberg A. Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and n-alkylpyridinium cations. Macromolecules, 1997, 30(12): 3519–3525
Bronich TK, Popov AM, Eisenberg A, Kabanov VA, Kabanov AV. Effects of block length and structure of surfactant on self-assembly and solution behavior of block ionomer complexes. Langmuir, 2000, 16(2): 481–489
Pochan DJ, Chen Z, Cui H, Hales K, Qi K, Wooley KL. Toroidal triblock copolymer assemblies. Science, 2004, 306(5693): 94–97
Cui H, Chen Z, Zhong S, Wooley KL, Pochan DJ. Block copolymer assembly via kinetic control. Science, 2007, 317(5838): 647–650
Li Z, Chen Z, Cui H, Hales K, Qi K, Wooley KL, Pochan DJ. Disk morphology and disk-to-cylinder tunability of poly(acrylic acid)-b-poly(methyl acrylate)-b-polystyrene triblock copolymer solution-state assemblies. Langmuir, 2005, 21(16): 7533–7539
Zhong S, Cui H, Chen Z, Wooley KL, Pochan DJ. Helix self-assembly through the coiling of cylindrical micelles. Soft Matter, 2008, 4(1): 90–93
Wang B, Ma R, Liu G, Li Y, Liu X, An Y, Shi L. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir, 2009, 25(21): 12522–12528
Yao X, Chen D, Jiang M. Micellization of ps-b-p4vp/formic acid in chloroform without or with the premixing of the copolymer with decanoic acid. Macromolecules, 2004, 37(11): 4211–4217
Han P, Li S, Wang C, Xu H, Wang Z, Zhang X, Thomas J, Smet M. Uv-responsive polymeric superamphiphile based on a complex of malachite green derivative and a double hydrophilic block copolymer. Langmuir, 2011, 27(23): 14108–14111
Chen S-C, Kuo S-W, Chang F-C. On modulating the self-assembly behaviors of poly(styrene-b-4-vinylpyridine)/octyl gallate blends in solution state via hydrogen bonding from different common solvents. Langmuir, 2011, 27(16): 10197–10205
Yoshida E, Kunugi S. Micelle formation of nonamphiphilic diblock copolymers through noncovalent bond cross-linking. Macromolecules, 2002, 35(17): 6665–6669
Chen D, Jiang M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc Chem Res, 2005, 38(6): 494–502
Krappe U, Stadler R, Voigt-Martin I. Chiral assembly in amorphous abc triblock copolymers. Formation of a helical morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) block copolymers. Macromolecules, 1995, 28(13): 4558–4561
Cornelissen JJLM, Fischer M, Sommerdijk NAJM, Nolte RJM. Helical superstructures from charged poly(styrene)-poly(isocyano-dipeptide) block copolymers. Science, 1998, 280(5368): 1427–1430
Geng Y, Discher DE, Justynska J, Schlaad H. Grafting short peptides onto polybutadiene-block-poly(ethylene oxide): A platform for self-assembling hybrid amphiphiles. Angew Chem Int Ed, 2006, 45(45): 7578–7581
Xiang H, Shin K, Kim T, Moon SI, McCarthy TJ, Russel TP. From cylinders to helices upon confinement. Macromolecules, 2005, 38(4): 1055–1056
Schacher FH, Rudolph T, Drechsler M, Müller AHE. Core-crosslinked compartmentalized cylinders. Nanoscale, 2011, 3(1): 288–297
Stadler R, Auschra C, Beckmann J, Krappe U, Voight-Martin I, Leibler L. Morphology and thermodynamics of symmetric poly(a-block-b-block-c) triblock copolymers. Macromolecules, 1995, 28(9): 3080–3097
Ho R-M, Chiang YW, Lin S-C, Chen C-K. Helical architectures from self-assembly of chiral polymers and block copolymers. Prog Polym Sci, 2011, 36(3): 376–453
Chiang Y-W, Ho R-M, Burger C, Hasegawa H. Helical assemblies from chiral block copolymers. Soft Matter, 2011, 7(21): 9797–9803
Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical polymers: Synthesis, structures, and functions. Chem Rev, 2009, 109(11): 6102–6211
Wu Y, Cheng G, Katsov K, Sides SW, Wang J, Tang J, Fredrickson GH, Moskovits M, Stucky GD. Composite mesostructures by nano-confinement. Nat Mater, 2004, 3(11): 816–822
Jinnai H, Kaneko T, Matsunaga K, Abetz C, Abetz C. A double helical structure formed from an amorphous, achiral abc triblock terpolymer. Soft Matter, 2009, 5(10): 2042–2046
Dobriyal P, Xiang H, Kazuyuki M, Chen J-T, Jinnai H, Russell TP. Cylindrically confined diblock copolymers. Macromolecules, 2009, 42(22): 9082–9088
Hayward RC, Pochan DJ. Tailored assemblies of block copolymers in solution: It is all about the process. Macromolecules, 2010, 43(8): 3577–3584
Pochan DJ, Zhu J, Zhang K, Wooley KL, Miesch C, Emrick T. Multicompartment and multigeometry nanoparticle assembly. Soft Matter, 2011, 7(6): 2500–2506
Jain S, Bates FS. Consequences of nonergodicity in aqueous binary peo-pb micellar dispersions. Macromolecules, 2004, 37(4): 1511–1523
Christian DA, Tian A, Ellenbroek WG, Levental I, Rajagopal K, Janmey PA, Liu AJ, Baumgart T, Discher DE. Spotted vesicles, striped micelles and janus assemblies induced by ligand binding. Nat Mater, 2009, 8(10): 843–849
Cui H, Chen Z, Wooley KL, Pochan DJ. Origins of toroidal micelle formation through charged triblock copolymer self-assembly. Soft Matter, 2009, 5(6): 1269–1278
O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility Chem Soc Rev, 2006, 35(11): 1068–1083
Prochazka K, Baloch MK, Tuzar Z. Photochemical stabilization of block copolymer micelles. Makromol Chem, 1979, 180(10): 2521–2523
Wilson DJ, Riess G. Photochemical stabilization of block copolymer micelles. Eur Polym J, 1988, 24(7): 617–621
Kato M, Ichijo T, Ishii K, Hasegawa M. Novel synthesis of photo-crosslinkable polymers. J Polym Sci A Polym Chem, 1971, 9(8): 2109–2128
Ishizu K, Onen A. Core-shell type polymer microspheres prepared by domain fixing of block copolymer films. J Polym Sci A Polym Chem, 1989, 27(11): 3721–3731
Saito R, Ishizu K, Fukutomi T. Crosslinking of the inner poly(methyl methacrylate) core of poly(α-methylstyrene-b-methyl methacrylate) micelles in selective solvent: 1. Effect of solvent selectivity Polymer, 1990, 31(4): 679–683
Ishizu K, Kuwahara K. Organized polymerization of functional diblock copolymers possessing central isoprene groups. J Polym Sci A Polym Chem, 1993, 31(3): 661–665
Liu G, Xu X, Skupinska K, Hu N, Yao H. Cross-linked polymer brushes. Ii. Formation and properties of poly(isobutylvinyl ether)-6-poly[2-(vinyloxy)ethyl cinnamate] brushes. J Appl Polym Sci, 1994, 53(12): 1699–1707
Qiu X, Liu G. Water-dispersible fluorescent nanospheres from poly(solketal acrylate)-block-poly(2-hydroxyethyl acrylate). Polymer, 2004, 45(21): 7203–7211
Thurmond II KB, Kowalewski T, Wooley KL. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles. J Am Chem Soc, 1996, 118(30): 7239–7240
Wooley KL. From dendrimers to knedel-like structures. Chem Eur J, 1997, 3(9): 1397–1399
Zhang L, Liu W, Lin L, Chen D, Stenzel MH. Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the raft process. Biomacromo-lecules, 2008, 9(11): 3321–3331
Joralemon M, O’Reilly RK, Hawker CJ, Wooley KL. Shell click-crosslinked (scc) nanoparticles: A new methodology for synthesis and orthogonal functionalization. J Am Chem Soc, 2005, 127(48): 16892–16899
Feng G, Jia Y, Liu L, Chang W, Li J. Novel organotin-containing shell-cross-linked knedel and core-cross-linked knedel: Synthesis and application in catalysis. J Polym Sci A Polym Chem, 2010, 48(24): 5992–6002
Erhardt R, Boker A, Zettl H, Kaya H, Pyckhout-Hintzen W, Krausch G, Abetz V, Müller AHE. Janus micelles. Macromolecules, 2001, 34(4): 1069–1075
Gröschel AH, Walther A, Lobling TI, Schmelz J, Hanisch A, Schmalz H, Müller AHE. Facile, solution-based synthesis of soft, nanoscale janus particles with tunable janus balance. J Am Chem Soc, 2012, 134(33): 13850–13860
Read ES, Armes SP. Recent advances in shell cross-linked micelles Chem Commun, 2007, (29): 3021–3035
van Nostrum CF. Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter, 2011, 7(7): 3246–3259
Jeon SJ, Yi GR, Yang SM. Cooperative assembly of block copolymers with deformable interfaces: Toward nanostructured particles. Adv Mater, 2008, 20(21): 4103–4108
Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308(5721): 537–541
Jeon SJ, Yi GR, Koo CM, Yang SM. Nanostructures inside colloidal particles of block copolymer/homopolymer blends. Macromolecules, 2007, 40(23): 8430–8439
Tanaka T, Saito N, Okubo M. Control of layer thickness of onionlike multilayered composite polymer particles prepared by the solvent evaporation method. Macromolecules, 2009, 42(19): 7423–7429
Schacher FH, Rupar PA, Manners I. Functional block copolymers: Nanostructured materials with emerging applications. Angew Chem Int Ed, 2012, 51(32): 7898–7921
Liu G: Block copolymer nanofibers and nanotubes. In Block copolymers in nanoscience; Lazzari M, Liu G, Lecommandoux S, Eds.; Wiley-VCH Verlag GmbH & Co. KGaG: Weinheim, 2006; pp 233–255
Liu G, Yan X, Qiu X, Li Z. Fractionation and solution properties of ps-b-pcema-b-ptba nanofibers. Macromolecules, 2002, 35(20): 7742–7747
Liu G, Yan X, Duncan S. Polystyrene-block-polyisoprene nanofiber fractions. 1. Preparation and static light-scattering study. Macromo-lecules, 2002, 35(26): 9788–9793
Liu G, Yan X, Duncan S. Polystyrene-block-polyisoprene nanofiber fractions. 2. Viscometric study. Macromolecules, 2003, 36(6): 2049–2054
Yan X, Liu G, Li H. Preparation, characterization, and solution viscosity of polystyrene-block-polyisoprene nanofiber fractions. Langmuir, 2004, 20(11): 4677–4683
Moore WR. Viscosities of dilute polymer solutions. Prog Polym Sci, 1967, 1: 1–43
Yamakawa H, Fujii M. Intrinsic viscosity of wormlike chains. Determination of the shift factor. Macromolecules, 1974, 7(1): 128–135
Yamakawa H, Yoshizaki T. Transport coefficients of helical wormlike chains. 3. Intrinsic viscosity. Macromolecules, 1980, 13(3): 633–643
Bohdanecky M. New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers. Macromolecules, 1983, 16(9): 1483–1492
Onsager L. The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci, 1949, 51 (May): 627–659
Flory PJ. Phase equilibria in solutions of rod-like particles. Proc R Soc London, A: Math Phys Sci, 1956, 234(1196): 73–89
Li X, Liu G. Layer-by-layer deposition of block copolymer nanofibers and porous nanofiber multilayer films. Langmuir, 2009, 25(18): 10811–10819
Decher G, Hong JD. Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol Symp, 1991, 46(1): 321–327
Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277(5330): 1232–1237
Ding J, Liu G. Water-soluble hollow nanospheres as potential drug carriers. J Phys Chem B, 1998, 102(31): 6107–6113
Cooney DT, Hillmyer MA, Cussler EL, Moggridge GD. Diffusion in nanoporous materials made from block copolymers. Crystallogr Rev, 2006, 12(1): 13–24
Phillip WA, Rzayev J, Hillmyer MA, Cussler EL. Gas and water liquid transport through nanoporous block copolymer membranes. J Membr Sci, 2006, 286(1-2): 144–152
Phillip WA, O’Neill B, Rodwogin M, Hillmyer MA, Cussler EL. Self-assembled block copolymer thin films as water filtration membranes. ACS Appl Mater Interfaces, 2010, 2(3): 847–853
Yan X, Liu G, Liu F, Tang BZ, Peng H, Pakhomov AB, Wong CY. Superparamagnetic triblock copolymer/fe2o3 hybrid nanofibers. Angew Chem Int Ed, 2001, 40(19): 3593–3596
Li Z, Liu G. Water-dispersible tetrablock copolymer synthesis, aggregation, nanotube preparation, and impregnation. Langmuir, 2003, 19(25): 10480–10486
Yan X, Liu G, Haeussler M, Tang BZ. Water-dispersible polymer/pd/ni hybrid magnetic nanofibers. Chem Mater, 2005, 17(24): 6053–6059
Underhill RS, Liu G. Preparation and performance of pd particles encapsulated in block copolymer nanospheres as a hydrogenation catalyst. Chem Mater, 2000, 12(12): 3633–3641
Lee JS, Hirao A, Nakahama S. Polymerization of monomers containing functional silyl groups. 5. Synthesis of new porous membranes with functional groups. Macromolecules, 1988, 21(1): 274–276
Lee JS, Hirao A, Nakahama S. Polymerization of monomers containing functional silyl groups. 7. Porous membranes with controlled microstructures. Macromolecules, 1989, 22(6): 2602–2606
Zhang Q, Remsen EE, Wooley KL. Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains. J Am Chem Soc, 2000, 122(15): 3642–3651
Seo M, Amendt MA, Hillmyer MA. Cross-linked nanoporous materials from reactive and multifunctional block polymers. Macromolecules, 2011, 44(23): 9310–9318
Huang H, Remsen EE, Kowalewski T, Wooley KL. Nanocages derived from shell cross-linked micelle templates. J Am Chem Soc, 1999, 121(15): 3805–3806
Turner JL, Wooley KL. Nanoscale cage-like structures derived from polyisoprene-containing shell cross-linked nanoparticle templates. Nano Lett, 2004, 4(4): 683–688
Sanji T, Nakatsuka Y, Ohnishi S, Sakurai H. Preparation of nanometer-sized hollow particles by photochemical degradation of polysilane shell cross-linked micelles and reversible encapsulation of guest molecules. Macromolecules, 2000, 33(23): 8524–8526
Hillmyer MA. Nanoporous materials from block copolymer precursors. Adv Polym Sci, 2005, 190: 137–181
Olson DA, Chen L, Hillmyer MA. Templating nanoporous polymers with ordered block copolymers. Chem Mater, 2008, 20(3): 869–890
Jackson EA, Hillmyer MA. Nanoporous membranes derived from block copolymers: From drug delivery to water filtration. ACS Nano, 2010, 4(7): 3548–3553
Lee ES, Na K, Bae YH. Polymeric micelle for tumor ph and folate-mediated targeting. J Control Release, 2003, 91(1-2): 103–113
Tang BC, Dawson M, Lai SK, Wang Y-Y, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci, USA, 2009, 106(46): 19268–19273
Sourkohi BK, Cunningham A, Zhang Q, Oh JK. Biodegradable block copolymer micelles with thiol-responsive sheddable coronas. Biomacromolecules, 2011, 12(10): 3819–3825
Njikang G, Liu G, Gao J. Preparation and quencher diffusion study of pyrene-tagged water-dispersible abc triblock nanospheres. Macromolecules, 2007, 40(25): 9174–9180
Hoppenbrouwers E, Li Z, Liu G. Triblock nanospheres with amphiphilic coronal chains. Macromolecules, 2003, 36(3): 876–881
Koh K, Liu GJ, Wilson CG. Grafting and patterned grafting of block copolymer nanotubes onto inorganic substrates. J Am Chem Soc, 2006, 128(49): 15921–15927
Discher DE, Eisenberg A. Polymer vesicles. Science, 2002, 297(5583): 967–973
Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA. Generation of polymerosomes from double-emulsions. Langmuir, 2005, 21(20): 9183–9186
Boyer C, Whittaker MR, Nouvel C, Davis TP. Synthesis of hollow polymer nanocapsules exploiting gold nanoparticles as sacrificial templates. Macromolecules, 2010, 43(4): 1792–1799
Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB. Dye-sensitized solar cells based on oriented tio2 nanotube arrays: Transport, trapping, and transfer of electrons. J Am Chem Soc, 2008, 130(40): 13364–13372
Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Use of highly-ordered tio2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2005, 6(2): 215–218
Normile D. Nanotubes generate full-color displays. Science, 1999, 286(5447): 2056–2057
Zheng Q, Kang H, Yun J, Lee J, Park JH, Baik S. Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells. ACS Nano, 2011, 5(6): 5088–5093
Zhu K, Neale NR, Miedaner A, Frank AJ. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented tio2 nanotubes arrays. Nano Lett, 2006, 7(1): 69–74
Hasobe T, Fukuzumi S, Kamat PV. Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew Chem Int Ed, 2006, 45(5): 755–759
Avouris P. Molecular electronics with carbon nanotubes. Acc Chem Res, 2002, 35(12): 1026–1034
Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 2001, 292(5517): 706–709
Halford B. Nanotube catalysts. Chemical & Engineering News, 2009, 87(6): 7
Pan X, Bao X. The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res, 2011, 44(8): 553–562
Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov, 2003, 2(1): 29–37
Organo VG, Rudkevich DM. Emerging host-guest chemistry of synthetic nanotubes. Chem Commun, 2007, (38): 3891–3899
Yin YF, Mays T, McEnaney B. Adsorption of nitrogen in carbon nanotube arrays. Langmuir, 1999, 15(25): 8714–8718
Pascal TA, Goddard WA, Jung Y. Entropy and the driving force for the filling of carbon nanotubes with water. Proc Natl Acad Sci, USA, 2011, 108(29): 11794–11798
Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58
Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev, 2006, 106(3): 1105–1136
Hu L, Hecht DS, Gruner G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem Rev, 2010, 110(10): 5790–5844
Zhou O, Shimoda H, Gao B, Oh S, Fleming L, Yue G. Materials science of carbon nanotubes: Fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc Chem Res, 2002, 35(12): 1045–1053
Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature, 1992, 358(6383): 220–222
Liu Z, Misra M. Dye-sensitized photovoltaic wires using highly ordered tio2 nanotube arrays. ACS Nano, 2010, 4(4): 2196–2200
Qiao Y, Wang Y, Yang Z, Lin Y, Huang J. Self-templating of metal-driven supramolecular self-assembly: A general approach toward 1d inorganic nanotubes. Chem Mater, 2011, 23(5): 1182–1187
Zhou M, Zhu H, Wang X, Xu Y, Tao Y, Hark S, Xiao X, Li Q. Cdse nanotube arrays on ito via aligned zno nanorods templating. Chem Mater, 2009, 22(1): 64–69
Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett, 2005, 5(7): 1343–1346
Brea RJ, Reiriz C, Granja JR. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes. Chem Soc Rev, 2010, 39(5): 1448–1456
Amdursky N, Molotskii M, Gazit E, Rosenman G. Elementary building blocks of self-assembled peptide nanotubes. J Am Chem Soc, 2010, 132(44): 15632–15636
Amdursky N, Beker P, Koren I, Bank-Srour B, Mishina E, Semin S, Rasing T, Rosenberg Y, Barkay Z, Gazit E, Rosenman G. Structural transition in peptide nanotubes. Biomacromolecules, 2011, 12(4): 1349–1354
Hourani R, Zhang C, van der Weegen R, Ruiz L, Li C, Keten S, Helms BA, Xu T. Processable cyclic peptide nanotubes with tunable interiors. J Am Chem Soc, 2011, 133(39): 15296–15299
Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300(5619): 625–627
Song Y, Challa SR, Medforth CJ, Qiu Y, Watt RK, Peña D, Miller JE, van Swol F, Shelnutt JA. Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem Commun, 2004, (9): 1044–1045
Tarabout C, Roux S, Gobeaux F, Fay N, Pouget E, Meriadec C, Ligeti M, Thomas D, IJsselstijn M, Besselievre F, Buisson D-A, Verbavatz J-M, Petitjean M, Valéry C, Perrin L, Rousseau B, Artzner F, Paternostre M, Cintrat J-C. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact. Proc Natl Acad Sci, USA, 2011, 108(19): 7679–7684
Smirnov AI, Poluektov OG. Substrate-supported lipid nanotube arrays. J Am Chem Soc, 2003, 125(28): 8434–8435
Karp ES, Inbaraj JJ, Laryukhin M, Lorigan GA. Electron paramagnetic resonance studies of an integral membrane peptide inserted into aligned phospholipid bilayer nanotube arrays. J Am Chem Soc, 2006, 128(37): 12070–12071
Xiao R, Cho SI, Liu R, Lee SB. Controlled electrochemical synthesis of conductive polymer nanotube structures. J Am Chem Soc, 2007, 129(14): 4483–4489
Yu K, Zhang L, Eisenberg A. Novel morphologies of “crew-cut” aggregates of amphiphilic diblock copolymers in dilute solution. Langmuir, 1996, 12(25): 5980–5984
Yu K, Eisenberg A. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic ps-b-peo diblock copolymers in solution. Macromolecules, 1998, 31(11): 3509–3518
Tian Z, Le H, Wang M, Zhang A, Feng Z-G. Vesicular and tubular structures prepared from self-assembly of novel amphiphilic aba triblock copolymers in aqueous solutions. J Polym Sci A Polym Chem, 2008, 46(3): 1042–1050
Raez J, Manners I, Winnik MA. Nanotubes from the self-assembly of asymmetric crystalline-coil poly(ferrocenylsilane-siloxane) block copolymers. J Am Chem Soc, 2002, 124(35): 10381–10395
Frankowski DJ, Raez J, Manners I, Winnik MA, Khan SA, Spontak RJ. Formation of dispersed nanostructures from poly(ferrocenyl-dimethylsilane-b-dimethylsiloxane) nanotubes upon exposure to supercritical carbon dioxide. Langmuir, 2004, 20(21): 9304–9314
Grumelard J, Taubert A, Meier W. Soft nanotubes from amphiphilic aba triblock macromonomers. Chem Commun, 2004, (13): 1462–1463
Wan WM, Pan CY. One-pot synthesis of polymeric nanomaterials via raft dispersion polymerization induced self-assembly and re-organization. Polym Chem, 2010, 1(9): 1475–1484
Jia L, Lévy D, Durand D, Impéror-Clerc M, Cao A, Li M-H. Smectic polymer micellar aggregates with temperature-controlled morphologies. Soft Matter, 2011, 7(16): 7395–7403
Kim Y, Dalhaimer P, Christian DA, Discher DE. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology, 2005, 16(7): S484–S491
Geng Y, Discher DE. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J Am Chem Soc, 2005, 127(37): 12780–12781
Geng Y, Discher DE. Visualization of degradable worm micelle breakdown in relation to drug release. Polymer, 2006, 47(7): 2519–2525
Kang M, Moon B. Synthesis of photocleavable poly(styrene-block-ethylene oxide) and its self-assembly into nanoporous thin films. Macromolecules, 2009, 42(1): 455–458
Schumers J-M, Gohy J-F, Fustin C-A. A versatile strategy for the synthesis of block copolymers bearing a photocleavable junction. Polym Chem, 2010, 1(2): 161–163
Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. Peg-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc, 2008, 130(18): 6001–6009
Cerritelli S, Velluto D, Hubbell JA. Peg-ss-pps: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules, 2007, 8(6): 1966–1972
Goldbach JT, Russell TP, Penelle J. Synthesis and thin film characterization of poly(styrene-block-methyl methacrylate) containing an anthracene dimer photocleavable junction point. Macromolecules, 2002, 35(11): 4271–4276
Goldbach JT, Lavery KA, Penelle J, Russell TP. Nano-to macro-sized heterogeneities using cleavable diblock copolymers. Macromolecules, 2004, 37(25): 9639–9645
Tang L-Y, Wang Y-C, Li Y, Du J-Z, Wang J. Shell-detachable micelles based on disulfide-linked block copolymer as potential carrier for intracellular drug delivery. Bioconjugate Chem, 2009, 20(6): 1095–1099
Wang K, Liu Y, Yi W-J, Li C, Li Y-Y, Zhuo R-X, Zhang X-Z. Novel shell-cross-linked micelles with detachable peg corona for glutathione-mediated intracellular drug delivery. Soft Matter, 2013, 9(3): 692–699
Yurt S, Anyanwu UK, Scheintaub JR, Coughlin EB, Venkataraman D. Scission of diblock copolymers into their constituent blocks. Macromolecules, 2006, 39(5): 1670–1672
Zhang M, Yang L, Yurt S, Misner MJ, Chen J-T, Coughlin EB, Venkataraman D, Russell TP. Highly ordered nanoporous thin films from cleavable polystyrene-block-poly(ethylene oxide). Adv Mater, 2007, 19(12): 1571–1576
Lin S, Du F, Wang Y, Ji S, Liang D, Yu L, Li Z. An acid-labile block copolymer of pdmaema and peg as potential carrier for intelligent gene delivery systems. Biomacromolecules, 2008, 9(1): 109–115
Bang J, Kim SH, Drockenmuller E, Misner MJ, Russell TP, Hawker CJ. Defect-free nanoporous thin films from abc triblock copolymers. J Am Chem Soc, 2006, 128(23): 7622–7629
Han D, Tong X, Zhao Y. Fast photodegradable block copolymer micelles for burst release. Macromolecules, 2011, 44(3): 437–439
Han D, Tong X, Zhao Y. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir, 2012, 28(5): 2327–2331
Theato P. One is enough: Influencing polymer properties with a single chromophoric unit. Angew Chem Int Ed, 2011, 50(26): 5804–5806
Cabane E, Malinova V, Meier W. Synthesis of photocleavable amphiphilic block copolymers: Toward the design of photosensitive nanocarriers. Macromol Chem Phys, 2010, 211(17): 1847–1856
Zhao H, Gu W, Sterner E, Russell TP, Coughlin EB, Theato P. Highly ordered nanoporous thin films from photocleavable block copolymers. Macromolecules, 2011, 44(16): 6433–6440
Schumers J-M, Fustin C-A, Gohy J-F. Light-responsive block copolymers. Macromol Rapid Commun, 2010, 31(18): 1588–1607
Zhao Y. Photocontrollable block copolymer micelles: What can we control? J Mater Chem, 2009, 19(28): 4887–4895
Zhao Y. Light-responsive block copolymer micelles. Macromolecules, 2012, 45(9): 3647–3657
Zhao H, Sterner ES, Coughlin EB, Theato P. O-nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science. Macromolecules, 2012, 45(4): 1723–1736
Holmes CP. Model studies for new o-nitrobenzyl photolabile linkers: Substituent effects on the rates of photochemical cleavage. J Org Chem, 1997, 62(8): 2370–2380
Xue Z, Liu M, Jiang L. Recent developments in polymeric superoleophobic surfaces. J Polym Sci B Polym Phys, 2012, 50(17): 1209–1224
Rabnawaz M, Liu G. Preparation and application of a dual light-responsive triblock terpolymer. Macromolecules, 2012, 45(13): 5586–5595
Tezuka Y, Oike H. Topological polymer chemistry. Prog Polym Sci, 2002, 27(6): 1069–1122
Tezuka Y. Topological polymer chemistry by electrostatic self-assembly. J Polym Sci A Polym Chem, 2003, 41(19): 2905–2917
Tezuka Y. Topological polymer chemistry by dynamic selection from electrostatic polymer self-assembly. Chem Rec, 2005, 5(1): 17–26
Hirao A, Murano K, Oie T, Uematsu M, Goseki R, and Yuri Matsuo Y. Chain-end- and in-chain-functionalized ab diblock copolymers as key building blocks in the synthesis of well-defined architectural polymers. Polym Chem, 2011, 2(6): 1219–1233
Pyun J, Tang C, Kowalewski T, Frechet JMJ, Hawker CJ. Synthesis and direct visualization of block copolymers composed of different macromolecular architectures. Macromolecules, 2005, 38(7): 2674–2685
Dong Y-Q, Tong Y-Y, Dong B-T, Du F-S, Li Z-C. Preparation of tadpole-shaped amphiphilic cyclic ps-b-linear peo via atrp and click chemistry. Macromolecules, 2009, 42(8): 2940–2948
Wulff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed Engl, 1972, 11(4): 341
Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed, 1995, 34(17): 1812–1832
Sellergren B. Imprinted chiral stationary phases in high-performance liquid chromatography. J Chromatogr A, 2001, 906(1-2): 227–252
Lepistoe M, Sellergren B. Discrimination between amino acid amide conformers by imprinted polymers. J Org Chem, 1989, 54(26): 6010–6012
Carboni D, Flavin K, Servant A, Gouverneur V, Resmini M. The first example of molecularly imprinted nanogels with aldolase type i activity. Chem Eur J, 2008, 14(23): 7059–7065
Karlsson BCG, Rosengren AM, Naslund I, Andersson PO, Nicholls IA. Synthetic human serum albumin sudlow i binding site mimics. J Med Chem, 2010, 53(22): 7932–7937
Bui BTS, Merlier F, Haupt K. Toward the use of a molecularly imprinted polymer in doping analysis: Selective preconcentration and analysis of testosterone and epitestosterone in human urine. Anal Chem, 2010, 82(11): 4420–4427
Stringer RC, Gangopadhyay S, Grant SA. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Anal Chem, 2010, 82(10): 4015–4019
Apodaca DC, Pernites RB, Del Mundo FR, Advincula RC. Detection of 2,4-dinitrotoluene (dnt) as a model system for nitroaromatic compounds via molecularly imprinted short-alkyl-chain sams. Langmuir, 2011, 27(11): 6768–6779
ten Brinke G, Loos K, Vukovic I, du Sart GG. Hierarchical self-assembly of two-length-scale multiblock copolymers. J Phys: Condens Matter, 2011, 23(28): 284110/284111–284116
Li X, Liu G, Han D. Wrapping amino-bearing block copolymer cylinders around carboxyl-bearing nanofibers: A case of hierarchical assembly. Soft Matter, 2011, 7(18): 8216–8223
Nie L, Liu S, Shen W, Chen D, Jiang M. One-pot synthesis of amphiphilic polymeric janus particles and their self-assembly into supermicelles with a narrow size distribution. Angew Chem Int Ed, 2007, 46(33): 6321–6324
Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science, 2007, 317(5838): 644–657
He W-N, Xu J-T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog Polym Sci, 2012, 37(10): 1350–1400
Massey JA, Temple K, Cao L, Rharbi Y, Raez J, Winnik MA, Manners I. Self-assembly of organometallic block copolymers: The role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethyl-siloxane) in n-alkane solvents. J Am Chem Soc, 2000, 122(47): 11577–11584
Massey JK, Power KN, Manners I, Winnik MA. Self-assembly of a novel organometallic-inorganic block copolymer in solution and the solid state: Nonintrusive observation of novel wormlike poly(ferrocenyldimethylsilane)-b-poly(dimethylsiloxane) micelles. J Am Chem Soc, 1998, 120(37): 9533–9540
Patra SK, Ahmed R, Whittell GR, Lunn DJ, Dunphy EL, Winnik MA, Manners I. Cylindrical micelles of controlled length with a π-conjugated polythiophene core via crystallization-driven self-assembly. J Am Chem Soc, 2011, 133(23): 8842–8845
Gao Y, Li X, Hong L, Liu G. Mesogen-driven formation of triblock copolymer cylindrical micelles. Macromolecules, 2012, 45(3): 1321–1330