Self-assembled ultrathin film of CNC/PVA–liquid metal composite as a multifunctional Janus material

Materials Horizons - Tập 6 Số 8 - Trang 1643-1653
Pengju Zhang1,2,3,4,5, Qian Wang6,1,2,3,5, Rui Guo7,3,8,9,10, Mingkuan Zhang1,2,3,4,5, Shunqi Wang11,3,12, Chennan Lu13,3,4,14,15, Mianqi Xue6,3,16,17,5, Jun‐Bing Fan6,18,19,16,5, Zhi‐Zhu He20,21,3,22,23, Wei Rao1,2,3,4,5
1Beijing Key Laboratory of Cryo-Biomedical Engineering, Chinese Academy of Sciences, Beijing 100190, China
2CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
3China
4School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100039, China
5Technical Institute of Physics and Chemistry
6Beijing 100190
7Beijing 100084
8Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
9School of Medicine
10 Tsinghua University
11Beihang University
12Shenyuan Honors College, Beihang University, China
13Beijing 100039
14School of Future Technology
15School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
16Chinese Academy of sciences
17National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
18CAS Center for Excellence in Nanoscience
19CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
20Beijing 100083
21Beijing Key Laboratory of Optimized Design for Modern Agricultural Equipment, College of Engineering, China Agricultural University, Beijing 100083 China
22China Agricultural University
23College of Engineering

Tóm tắt

A new way to fabricate asymmetric, flexible, and ultrathin liquid metal Janus films with electrical, optical, and thermal anisotropies is demonstrated.

Từ khóa


Tài liệu tham khảo

Wang, 2018, Nat. Commun., 9, 2004, 10.1038/s41467-018-04467-3

Yang, 2016, Angew. Chem., 55, 13398, 10.1002/anie.201601589

Xiao, 2015, Adv. Funct. Mater., 25, 2428, 10.1002/adfm.201404624

Pang, 2014, Angew. Chem., Int. Ed., 53, 5524, 10.1002/anie.201309352

Tybrandt, 2016, Small, 12, 180, 10.1002/smll.201502849

Yang, 2018, Adv. Mater., 30, e1801495, 10.1002/adma.201801495

Ping-Ping, 2013, ACS Nano, 7, 9241, 10.1021/nn403879g

Hong, 2014, Adv. Mater., 26, 7581, 10.1002/adma.201403259

Lee, 2014, Nat. Nanotechnol., 9, 317, 10.1038/nnano.2014.28

Xiao, 2016, Chem. Mater., 28, 7125, 10.1021/acs.chemmater.6b03420

He, 2019, Nano Energy, 59, 422, 10.1016/j.nanoen.2019.02.036

Liang, 2018, J. Mater. Chem. C, 6, 6666, 10.1039/C8TC00711J

He, 2018, Chem. Mater., 30, 4343, 10.1021/acs.chemmater.8b01587

Liang, 2018, Chem. Commun., 54, 12804, 10.1039/C8CC07143H

Li, 2014, RSC Adv., 4, 57611, 10.1039/C4RA10811F

Li, 2017, Nanoscale, 9, 18918, 10.1039/C7NR06456J

Ma, 2015, Adv. Funct. Mater., 25, 2436, 10.1002/adfm.201500348

Dickey, 2010, Adv. Funct. Mater., 18, 1097, 10.1002/adfm.200701216

Glatzel, 2013, Angew. Chem., Int. Ed., 52, 2355, 10.1002/anie.201207693

Tang, 2015, Adv. Funct. Mater., 24, 5851, 10.1002/adfm.201400689

Kim, 2018, Adv. Funct. Mater., 28, 1870195, 10.1002/adfm.201870195

Wu, 2018, J. Mater. Chem. C, 6, 6755, 10.1039/C8TC02003E

Liang, 2018, Chem. – Eur. J., 24, 17616, 10.1002/chem.201801957

Hu, 2017, Sci. Bull., 62, 700, 10.1016/j.scib.2017.04.015

Russell, 2017, Appl. Phys. Lett., 111, 254101, 10.1063/1.4999113

Zhang, 2016, Sens. Actuators, B, 223, 52, 10.1016/j.snb.2015.09.070

Ozutemiz, 2018, Adv. Mater. Interfaces, 1701596, 10.1002/admi.201701596

Bartlett, 2016, Adv. Mater., 28, 3726, 10.1002/adma.201506243

Lin, 2016, Extreme Mech. Lett., 7, 55, 10.1016/j.eml.2016.03.010

Wang, 2014, Sci. China: Technol. Sci., 57, 1721, 10.1007/s11431-014-5583-4

Chiechi, 2008, Angew. Chem., Int. Ed., 47, 142, 10.1002/anie.200703642

Gao, 2012, PLoS One, 7, e45485, 10.1371/journal.pone.0045485

Zheng, 2014, Sci. Rep., 4, 4588, 10.1038/srep04588

Wang, 2016, Adv. Mater., 27, 7109, 10.1002/adma.201502200

Bartlett, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 2143, 10.1073/pnas.1616377114

Guo, 2018, Sci. China: Technol. Sci., 61, 1031, 10.1007/s11431-018-9253-9

Secor, 2018, Adv. Electron. Mater., 4, 1700483, 10.1002/aelm.201700483

Zhang, 2015, Sci. Bull., 60, 943, 10.1007/s11434-015-0786-z

Yu, 2013, PLoS One, 8, e58771, 10.1371/journal.pone.0058771

Kalantar-zadeh, 2016, Appl. Mater. Today, 5, 73, 10.1016/j.apmt.2016.09.012

Boley, 2015, Adv. Mater., 27, 2355, 10.1002/adma.201404790

Boley, 2015, Adv. Mater., 27, 2355, 10.1002/adma.201404790

Hohman, 2011, Nano Lett., 11, 5104, 10.1021/nl202728j

Mohammed, 2017, Adv. Mater., 29, 1604965, 10.1002/adma.201604965

Liu, 2018, ACS Appl. Mater. Interfaces, 10, 28232, 10.1021/acsami.8b08722

Dickey, 2014, ACS Appl. Mater. Interfaces, 6, 18369, 10.1021/am5043017

Lu, 2015, ACS Appl. Mater. Interfaces, 7, 26923, 10.1021/acsami.5b07464

Routh, 2001, Ind. Eng. Chem. Res., 40, 4302, 10.1021/ie001070h

Felton, 2013, Int. J. Pharm., 457, 423, 10.1016/j.ijpharm.2012.12.027

Dong, 2013, Carbohydr. Polym., 95, 760, 10.1016/j.carbpol.2013.03.041

Yang, 2014, Circuit World, 40, 134, 10.1108/CW-07-2014-0029

Sheng, 2016, J. Med. Biol. Eng., 36, 265, 10.1007/s40846-016-0129-9

Yamaguchi, 2015, Angew. Chem., Int. Ed., 54, 12809, 10.1002/anie.201506469