Self‐Regeneration of Stereocenters (SRS)—Applications, Limitations, and Abandonment of a Synthetic Principle

Wiley - Tập 35 Số 23-24 - Trang 2708-2748 - 1996
Dieter Seebàch1, Andrea Rolf Sting1, Matthias Hoffmann1
1Laboratorium für Organische Chemie, der Eidgenössischen Technischen Hochschule, ETH‐Zentrum, Universitätstrasse 16, CH‐8092 Zürich (Switzerland), Fax.: Int. code +(1)632‐1144, e‐mail: [email protected]

Tóm tắt

AbstractIn order to replace a substituent at a single stereogenic center of a chiral molecule without racemization, a temporary center of chirality is first generated diastereoselectively, the original tetragonal center is then trigonalized by removal of a substituent, a new ligand is introduced, again diastereoselectively, and finally, the temporary center is removed. By means of these four steps (the “Self‐Regeneration of Stereocenters”, SRS), 2‐ and 3‐amino‐, hydroxy‐, and sulfanylcarboxylic acids have been successfully alkylated with formation of tertiary carbon centers and without the use of a chiral auxiliary. Use of this methodology has allowed the potential of these inexpensive chiral building blocks to be expanded considerably. This article aims to demonstrate (using, in part, examples from natural product syntheses) that chiral heterocyclic acetals with enamine, enol ether, enolate, dienolate, enoate, radical, and acyliminium functionalities and also those that are potential reactants for Michael additions and pericyclic processes (for example, electron‐rich and electronpoor dienophiles and dienes) are now easily accessible, more often than not, in both enantiomeric forms. Stereogenic nitrogen atoms of aziridines, boron atoms of cyclic or linear systems, and stereogenic planes of π‐complexes can also be used as the temporary chirality element in other approaches to the realization of the SRS principle. Enantiomerically pure derivatives of, for example, glycine, hydroxy‐ and sulfanylacetic acid, 3‐aminopropanoic acid, and 3‐oxocarboxylic acids can be prepared by resolution of racemic mixtures via diastereoisomeric salts or by chromatography on a chiral column. Hence, the extensive reactivity of compounds developed to test the SRS principle and, above all, the outstanding stereoselectivities of the reactions can be put to good use even when no suitable chiral precursor is available—even though this amounts to an abandonment of the principle! The readily available 2‐tert‐butyl‐1,3‐imidazolidin‐3‐one, ‐oxazolid‐in‐5‐one, ‐dioxin‐3‐one, and ‐hydropyrimidinone (all of which contain a single stereogenic center at the acetal C atom) can thus be used in the preparation of a vast range of 2‐amino‐ and 3‐hydroxycarboxylic acids, and no chiral auxiliary has to be removed or regenerated during these procedures. (One example is the synthesis of 4‐fluoro‐MeBmt, a derivative of the C9amino acid found in cyclosporin.) In the final chapter we will discuss the most useful findings gained from investigations into both the self‐regeneration of stereocenters and the use of chiral acetals in the synthesis of enantiomerically pure compounds (EPC synthesis): the formation and characteristics of complexes obtained from Li‐enolates and other Li compounds with secondary amines; the application of α‐alkoxy and α‐amino‐Li‐alkoxides as in situ bases and sources of aldehydes in CC bond forming reactions with unstable enolates or nitronates; the significance of A1,3effects on the stereochemical course of nucleophilic, radical, and electrophilic reactions ofN‐acylated heterocycles and homo‐ or heterocyclic carboxylic ester enolates; and the effects of the amide protecting group on the reactivity of neighboring centers and on the stereoselectivity of the reactions at those centers. At the end of this article we have included an appendix containing tables, which are intended to summarize all the examples known in as complete a fashion as possible.

Từ khóa


Tài liệu tham khảo

Ingold C. K., 1969, Structure and Mechanism in Organic Chemistry

10.1021/jo00086a041

Godtfredsen S. E., 1977, Chimia, 31, 62

S. E.Godtfredsen Dissertation No. 6243 ETH; Zürich 1978.

Cram D. J., 1965, Fundamentals of Carbanion Chemistry, 85

10.1016/S0040-4039(00)60711-6

10.1002/ange.19951070230

10.1002/anie.199502221

10.1002/ange.19961081524

1996, Angew. Chem. Int. Ed. Engl., 35, 1660

10.1007/978-3-642-65332-2

10.1002/ange.19941061104

10.1002/anie.199411291

10.1016/S0040-4020(01)90459-4

10.1021/ja00523a066

10.1002/ange.19840961205

10.1002/anie.198409321

10.1016/S0040-4020(01)90461-2

1994, Mechanistic Aspects of Polar Organometallic Chemistry, Tetrahedron, 50, 5845

10.1002/hlca.19780610837

10.1016/0022-328X(85)87352-6

Huber I. M. P., 1987, Helv. Chim. Acta, 70

For example the diastereoselective formation of such organometallic derivatives has been demonstrated with Li‐dithianes such asI(“Umpolung of the Reactivity of Carbonyl Compounds Through Sulfur‐Containing Reagents”:B.‐T.Gröbel D.Seebach Synthesis1977 357–402;

10.1021/ja00467a023

10.1002/ange.19800920121

10.1002/anie.198000531

10.1002/ange.19810930521

10.1002/anie.198104651

10.1016/S0040-4020(01)85784-7

10.1016/B978-1-4831-0094-4.50006-2

Kolb M., 1995, Encyclopedia of Reagents for Organic Synthesis, 2983

10.1016/S0040-4039(01)86532-1

Cheshire D. R., 1991, Comprehensive Organic Synthesis. Selectivity, Strategy, and Efficiency in Modern Organic Chemistry, 193

10.1016/0040-4039(94)85008-9

10.1021/ed064p587

10.1002/ange.19810931112

10.1002/anie.198109711

We believe that an aggregate of the achiral enolate and the chiral enolate (shown in Scheme 2a) may be responsible for the observed effect:D.Wasmuth Dissertation No. 7033 ETH Zürich 1982.

10.1002/hlca.19930760721

Krauch H., 1976, Reaktionen der Organischen Chemie

Windholz M., 1983, The Merck Index, ONR1

10.1007/978-3-663-02002-8

10.1007/978-3-322-94726-0

Hassner A., 1994, Organic Syntheses Based on Name Reactions and Unnamed Reactions

B.Beagley M. J.Betts R. G.Pritchard A.Schofield R. J.Stoodley S.Vohra J. Chem. Soc. Chem. Commun.1991 924–925.

10.1021/ja00102a066

10.5059/yukigoseikyokaishi.52.589

“Crystal Structures and Stereoselective Reactions of Organic Lithium Derivatives”:D.Seebach Proceedings of The Robert A. Welch Foundation Conferences on Chemical Research. XXVII Stereospecificity in Chemistry and Biochemistry Houston TX 1984 pp. 93–145.

10.1002/ange.19881001206

10.1002/anie.198816241

“Enantioselective Aldol and Michael Additions of Achiral Enolates in the Presence of Chiral Lithium Amides and Amines”:E.Juaristi A. K.Beck J.Hansen T.Matt T.Mukhopadhyay M.Simson D.Seebach Synthesis1993 1271–1290.

10.1002/ange.19891010306

10.1002/anie.198902771

Williard P. G., 1991, Comprehensive Organic Synthesis. Selectivity, Strategy and Efficiency in Modern Organic Chemistry, 1

Jackman L. M., 1992, Advances in Carbanion Chemistry, 45

Seebach D., 1992, How We Stumbled Into Peptide Chemistry, Aldrichimica Acta, 25, 59

Seebach D., 1995, Modern Synthetic Methods, 1

10.1021/ar00029a001

10.1002/hlca.19850680530

10.1021/ja00108a005

10.1002/ange.19870990106

10.1002/anie.198700241

Braun M., 1992, Advances in Carbanion Chemistry, 177

Seebach D., 1983, Modern Synthetic Methods, 217

10.1007/978-3-642-70704-9

10.1021/jo00007a042

10.1021/jo00020a006

10.1021/ja00003a051

10.1021/ja00844a076

10.1002/nadc.19900381005

10.1002/cber.19941271215

10.1002/cber.19911240822

10.1002/ange.19921041135

10.1002/anie.199214811

10.1002/ange.19931050514

10.1002/hlca.19960790303

Mukaiyama T., 1982, Organic Reactions, 203, 10.1002/0471264180.or028.03

Seebach D., 1976, Enantiomerenreine Naturstoffe und Pharmaka aus billigen Vorläufern (Chiral Pool).–Zur Frage der chiral ökonomischen und ökologischen Totalsynthese, Nachr. Chem. Techn., 24, 415, 10.1002/nadc.19760241704

One of the first applications of this principle was independently published byG.Fráter[42] and by us [43].

10.1016/S0040-4039(01)82109-2

10.1002/hlca.19810640829

Initially we used the term “self‐reproduction of chirality” or “of stereogenic centers” [45–48]. Our colleague Vladimir Prelog has however convinced us that the term “self‐reproduction” should be reserved only for living organisms.

10.1021/ja00354a034

R.Naef D.Seebach Liebigs Ann. Chem.1983 1930–1936.

10.1016/S0040-4020(01)82417-0

10.1007/978-3-642-82805-8_4

Eliel E. L., 1994, Stereochemistry of Organic Compounds

Helmchen G., 1995, Methods of Organic Chemistry, 1

Gawley R. E., 1996, Tetrahedron Organic Chemistry Series

2 2‐Disubstituted 1 3‐dioxolanones have been prepared from lactic acid mandelic acid and alkyl aryl and other unsymmetrical ketones by using acid catalysis [51] or Ru catalysis [52]. However reactions of the resulting enolates tend to occur albeit not unexpectedly in a not particularly stereoselective fashion [51]. On the other hand the diastereoselectivity of Michael additions to dioxinones remains high even when the acetal center is substituted by both atBu and a Me group or when the six‐membered ring derived from menthone is the substituent on the acetal center. See the work of Lange et al. [160–162] and of Kaneko et al. [238] and ref. [302].

10.1016/S0040-4039(00)74171-2

10.1021/jo00111a058

10.1016/0022-328X(93)83017-P

10.1002/ange.19660780803

10.1002/anie.196603851

10.1002/ange.19820940805

10.1002/anie.198205671

10.1002/ange.19820940904

10.1002/anie.198206541

See Schemes 2c–e and the refs. [212–218].

10.1002/hlca.19900730317

10.1002/hlca.19940770513

BASF kindly donated large quantities of pivalaldehyde to us over many years. We thank them for their generosity.

Shell Chemicals is a source of large quantities of pivalaldehyde.

It is highly likely that transformations previously described in the literature have followed the principles of self‐regeneration of stereocenters; however we know of no example where this synthetic principle was recognized explicitly formulated and systematically used before our own work.

10.1021/ja00210a028

10.1016/0040-4039(94)85315-0

10.1002/ange.19921040133

10.1002/anie.199200841

10.1016/S0040-4020(01)90463-6

10.1016/0040-4020(80)80024-X

10.1002/hlca.19920750326

10.1002/hlca.19850680117

10.1002/hlca.19850680118

Studer A., 1995, Encyclopedia of Reagents for Organic Synthesis, 306

Sting A. R., 1995, Encyclopedia of Reagents for Organic Synthesis, 308

Sting A. R., 1995, Encyclopedia of Reagents for Organic Synthesis, 931

10.1002/nadc.19880361108

Mulzer J., 1991, Organic Synthesis Highlights, 19

The acid‐catalyzed cyclization of the appropriate alanine derivative to give imidazolidinone1(RA=tBu R = Me × = Y = NH) results in a 1:1 mixture of thecisandtransproducts. As thecisisomer can betert‐butoxycarbonylated at N1 under mild conditions while thetransisomer remains unprotected they can be easily separated: see Section 7 and ref. [235].

10.1002/hlca.19850680521

10.1002/hlca.19870700129

Beck A. K., 1988, Chimia, 42, 142

10.1002/hlca.19850680829

10.1002/hlca.19910740846

D.Seebach M. A.Maestro M.Sefkow G.Adam S.Hintermann A.Neidlein Liebigs Ann. Chem.1994 701–717.

For the preparations and reactions of dioxolanones derived from chiral α‐hydroxy acids and ucetaldehye isobutyraldehyde benzaldehyde cyclohexane‐carboxaldehyde acetone 2‐hexanone acetophenone or pivalophenone see refs. [51 52 76–79].

10.1021/jo00310a020

10.1016/0040-4039(90)80091-Y

10.1016/0040-4039(91)80352-7

10.1016/S0040-4039(00)76701-3

The selectivity with regard to the configuration of the newly formed stereogenic center at the 1′‐position (addition to aldehydes and Michael acceptors) is generally low. For highly diastereoselective reactions of chiral glycinederived enolates with concomitant formation of two new stereogenic centers see Section 9.3 and Scheme 29e.

D.Seebach E.Dziadulewicz L.Behrendt S.Cantoreggi R.Fitzi Liebigs Ann. Chem.1989 1215–1232.

D.Seebach T.Gees F.Schuler Liebigs Ann. Chem.1993 785–799;

Erratum:Liebigs Ann. Chem.1994 529.

A.Studer D.Seebach Liebigs Ann. Chem.1995 217–222.

10.1021/ja00077a076

10.1021/jo00115a017

10.1021/jo00307a008

D.Seebach T.Vettiger H.‐M.Müller D. A.Plattner W.Petter Liebigs Ann. Chem.1990 687–695.

10.1002/hlca.19850680119

The use of the SRS principle is not necessary in the case of hydroxyproline as this amino acid contains a second stereogenic center.

10.1016/S0040-4039(00)86257-7

10.1002/hlca.19840670635

See also the discussion in Sections 9.2 and 9.4 and Schemes 28 and 33 which relate to this particularly problematic case.

10.1016/0040-4039(95)01160-J

10.1016/S0040-4039(00)86256-5

10.1080/07328308908047994

10.1021/jo00312a033

see also ref. [131]. For the formation of products of typeXIIIandXIVfrom reactions of dioxolanone carboxylic ester enolates such asXandXIand for related reactions of cyclopentane carboxylic ester enolates which interestingly may proceedcisto the neighboring substituent at the stereogenic center see refs. [62 93–98]. The enolateXIhas a relatively high tendency to decompose by β‐elimination (see the discussion in the text and the legends of Scheme 6 and Schemes 29 b and 32 c and also the review in ref. [36]).

10.1002/hlca.19870700426

10.1002/ange.19810931239

10.1002/anie.198110301

10.1002/cber.19831161016

K.Ditrich R. W.Hoffmann Liebigs Ann. Chem.1990 15–21.

R.Stürmer Liebigs Ann. Chem.1991 311–313.

10.1016/0040-4039(91)80034-4

E.Pfammatter D.Seebach Liebigs Ann. Chem.1991 1323–1336.

10.1016/S0040-4039(01)81227-2

Seebach D., 1988, Chimia, 42, 176

Seebach D., 1985, Chimia, 39, 20

Seebach D., 1989, Chimia, 43, 314

A.Jeanguenat D.Seebach J. Chem. Soc. Perkin Trans. 11991 2291–2298.

G.Pattenden S. M.Thom J. Chem. Soc. Perkin Trans. 11993 1629–1636.

10.1016/S0040-4020(01)86313-4

10.1016/S0040-4020(01)82385-1

R. J.Boyce G. C.Mulqueen G.Pattenden Tetrahedron Lett.1994 35 5705–5708.

R. J.Boyce G.Pattenden Synlett1994 587–588.

10.1021/ja00437a036

10.1021/ja00463a042

10.1021/ja00496a026

Z.Györgydeák M.Kajtár‐Peredy J.Kajtár M.Kajtár Liebigs Ann. Chem.1987 927–934;

Poetsch E., 1987, Chimia, 41, 148

Z.Györgydeák J.Kajtár M.Kajtár M.Kajtár‐Peredy Liebigs Ann. Chem.1990 281–286.

The eliminations depicted in Scheme 6e cannot proceed along the optimal trajectory (Bürgi‐Dunitz rules) and to use a different terminology are “Baldwin‐forbidden retro‐5‐endo‐trigprocesses”: (a)J. E.Baldwin J. Chem. Soc. Chem. Commun.1976 734–736;

(b)J. E.Baldwin J.Cutting W.Dupont L. I.Kruse L.Silberman R. C.Thomas J. Chem. Soc. Chem. Commun.1976 736–738;

10.1021/jo00444a011

(d)J. E.Baldwin L. I.Kruse J. Chem. Soc. Chem. Commun.1977 233–235;

10.1515/9783110842425

Deslongchamps P., 1983, Organic Chemistry Series

10.1007/978-3-642-68676-4

10.1021/ar00089a002

10.1021/ja00244a012

10.1107/S010876818800374X

10.1021/ja00223a012

10.1021/ja00230a004

10.1002/9783527616091

10.1002/9783906390390

10.1016/0957-4166(94)80117-7

10.1016/S0040-4039(00)96091-X

10.1002/hlca.19850680603

10.1021/jm00386a016

10.1021/jm00110a005

10.15227/orgsyn.072.0062

10.1016/S0040-4039(00)73294-1

10.1016/0022-328X(91)86213-A

10.1002/hlca.19880710124

10.1016/S0040-4020(01)87682-1

10.1016/0957-4166(94)80156-8

10.1002/hlca.19850680611

10.1021/ja00025a049

10.1016/S0040-4020(01)80345-8

K.Krohn A.Meyer Liebigs Ann. Chem.1994 167–174.

10.1021/ja00225a069

K.Krohn I.Hamann Liebigs Ann. Chem.1988 949–953.

10.1021/ja00052a096

10.1021/ja00084a062

10.1021/ja00065a054

10.1002/ange.19790911206

10.1002/anie.197909171

10.1002/hlca.19870700423

C. P.Schickli D.Seebach Liebigs Ann. Chem.1991 655–668.

“Centenary Lecture. The Pursuit of Selectivity in Radical Reactions”:A. L. J.Beckwith Chem. Soc. Rev.1993 143–151.

10.1016/S0040-4020(01)88012-1

10.1016/S0040-4039(00)70683-6

10.1021/jo00038a028

A. L. J.Beckwith C. L. L.Chai J. Chem. Soc. Chem. Commun.1990 1087–1088; see also ref. [175].

10.1002/cber.19891221225

10.1021/jo00007a053

10.1021/jo00034a037

10.3987/COM-94-S(B)35

P. M.Hardy D. J.Samworth J. Chem. Soc. Perkin Trans.1977 1954–1960.

10.1021/jo00004a005

10.1016/S0957-4166(00)80528-5

10.1021/ja00031a039

10.1016/0040-4020(93)80005-E

“Enantioselective Synthesis of α‐Substituted and α β‐Disubstituted β‐Amino Acids via Chiral Derivatives of 3‐Aminopropionic Acid”:E.Juaristi D.SeebachinEnantioselective Synthesis of β‐Amino Acids (Ed.: E. Juaristi) VCH Weinheim in press.

10.1002/hlca.19860690523

10.1021/jo00104a061

Seebach D., 1987, Workshop Conferences Hoechst, Vol. 17: Stereochemistry of Organic and Bioorganic Transformations, 85

10.1021/ja00222a039

10.1002/cber.19901231226

10.1002/hlca.19870700819

Beck A. K., 1990, Chimia, 44, 291, 10.2533/chimia.1990.291

10.1002/ange.19921040820

10.1002/anie.199210831

10.1002/cber.19941270317

D.Seebach U.Gysel K.Job A. K.Beck Synthesis1992 39–40.

Beck A. K., 1991, Chimia, 45, 379, 10.2533/chimia.1991.379

10.1021/jo00048a039

10.1016/S0040-4039(00)60309-X

10.1021/ja00087a018

G.Kneer J.Mattay G.Raabe C.Krüger J.Lauterwein Synthesis1990 599–603.

Lakner F. J., 1995, Organic Syntheses, 201

Podlech J., 1995, Encyclopedia of Reagents for Organic Synthesis, 3452

Beck A. K., 1995, Encyclopedia of Reagents for Organic Synthesis, 929

R.Breitschuh D.Seebach Synthesis1992 1170–1178.

In a similar fashion a thiolactic acid derivativeXVIIImay be alkylated (→XIX) at the α‐carbonyl carbon and due to the presence of a sulfoxide center a nonracemic product results. R. Breitschuh Dissertation. No. 9654 ETH Zürich 1992.

10.1016/S0040-4039(00)61260-1

10.1021/ja00093a065

10.1016/S0040-4020(01)80808-5

J. R.Axon A. L. J.Beckwith J. Chem. Soc. Chem. Commun.1995 549–550.

10.1016/0040-4020(95)00895-F

J.Mattay G.Kneer J.Mertes Synlett1990 145–147.

S. G.Pyne B.Dikic P. A.Gordon B. W.Skelton A. H.White J. Chem. Soc. Chem. Commun.1991 1505–1506;

10.1071/CH9930073

10.1016/0040-4020(95)98711-P

Seebach D., 1995, Ernst Schering Research Foundation Lecture

10.1002/hlca.19930760130

10.1002/hlca.19930760702

10.1002/hlca.19940770702

10.1002/ange.19941060415

10.1002/anie.199404401

10.1002/ange.19951071913

10.1021/ja00178a065

10.1016/S0040-4039(00)96385-8

10.1002/hlca.19890720410

S.Hintermann D.Seebach presently unpublished results;

S.Hintermann Dissertation ETH Zürich.

10.1002/ange.19860980927

10.1002/anie.198608431

We have speculated in great detail about the possible reasons for the behavior of acyliminium intermediates which differs completely from that of their enolate and enoate counterparts [62]. See also refs. [187 192 194 196];

G.Stucky Dissertation No. 8904 ETH Zürich 1989;

10.1021/jo00121a020

10.1002/andp.18341092307

10.1002/jlac.18490690302

10.1002/jlac.19023230304

10.1016/B978-0-08-052349-1.00056-1

P.Renaud D.Seebach Synthesis1986 424–426.

10.1002/hlca.19860690726

10.1002/ange.19881001021

10.1002/anie.198813511

10.1002/hlca.19890720302

10.1002/cber.19891221226

Stucky G., 1988, Elektrochemische Oxydation von Carbonsäuren zur Synthese enantiomerenreiner Verbindungen, GIT Fachz. Lab., 5, 535

Beck F., 1974, Elektroorganische Chemie. Grundlagen und Anwendungen

10.1007/978-3-642-69493-6

Torii S., 1985, Electroorganic Syntheses. Methods and Applications. Part I: Oxidations

10.1007/3-540-19180-1

Fry A. J., 1989, Synthetic Organic Electrochemistry

Lund H., 1991, Organic Electrochemistry. An Introduction and a Guide

Shono T., 1991, Electroorganic Synthesis

P.Renaud Dissertation No. 8155 ETH Zürich 1986.

10.1002/hlca.19920750413

10.1016/S0957-4166(00)82350-2

10.1021/ja00244a041

10.1016/0040-4039(94)85337-1

10.1016/0040-4039(94)85338-X

10.1016/0040-4039(94)85339-8

10.1016/0040-4039(94)85340-1

C.Genicot S. V.Ley Synthesis1994 1275–1277.

10.1016/S0957-4166(00)80404-8

10.1016/S0040-4020(01)85241-8

Compare this with the modifications of serine via oxazolidine dicarboxylic acid derivatives shown in Schemes 6d 7 9 10a 11a 12 14a 15 and in Table C in the appendix.

D.Seebach R.Häner Chemistry Lett. Jpn1987 49–52.

10.1002/hlca.19870700704

10.1002/cber.19901231018

V.Ferey T.Le Gall C.Mioskowski J. Chem. Soc. Chem. Commun.1995 487–489.

10.1002/ange.19961080418

Angew. Chem. Int. Ed. Engl.1996 430–432.

Franck‐Neumann M., 1987, Organometallics in Organic Synthesis, 247

H.‐J.Knölker Synlett1992 371–387.

T.Hayashi M.Konishi M.Kumada J. Chem. Soc. Chem. Commun.1984 107–108;

10.1016/S0040-4020(01)88880-3

10.1002/ange.19921040531

10.1002/anie.199206311

10.1016/S0040-4039(00)73725-7

10.1002/ange.19941060108

10.1002/anie.199401091

10.1016/S0040-4020(01)87271-9

(a)D.Enders M.Finkam Liebigs Ann. Chem.1993 551–555;

10.1002/ange.19941061914

Angew. Chem. Int. Ed. Engl. 1994 33

D.Enders B.Jandeleit Synthesis1994 1327–1330;

Liebigs Ann. Chem.1995 1173–1176;

10.1016/0040-4020(95)00282-D

D.Enders S.von Berg B.Jandeleit Synlett1996 18–20;

(b)D.Enders M.Finkam Synlett1993 401–403;

(c)W.‐J.Koot H.Hiemstra W. N.Speckamp J. Chem. Soc. Chem. Commun.1993 156–158;

J. C. P.Hopman H.Hiemstra W. N.Speckamp J. Chem. Soc. Chem. Commun.1995 617–618;

Speckamp W. N., 1994, Merck Swiss Lectureship '94

10.1016/S0040-4039(00)60723-2

10.1016/S0040-4039(00)60724-4

The decision as to whether we should include the usually catalytic process of the allylation of nucleophiles via Pd‐π‐allyl complexes such as that shown in Scheme 20 a in this discussion was not an easy one. On no account would we wish to cram an SN2 reaction that proceeds with inversion of configuration at a single stereogenic center of an enantiomerically pure substrate into the corset of the SRS principle!

Williams R. M., 1989, Synthesis of Optically Active α‐Amino Acids

10.1016/S0040-4020(01)80840-1

If one considers the necessary steps the chiral cyclic acetals shown in Schemes 10 and 16 which are derivatives of achiral carboxylic acids and are prepared by decarboxylation (aspartic acid → dihydropyrimidinone; serine threonine cysteine → imidazoline oxazoline thiazoline) are perhaps already results of overextending the SRS principle (laborious) despite their unique reactivity!

The glycine derivative shown in Scheme 21 (top right) may also be prepared from methionine by formation of the imidazolidinone elimination via a vinylglycine derivative oxidative cleavage and finally decarboxylation [223].

10.1002/hlca.19860690611

10.1002/hlca.19850680418

Seebach D., 1980, Modern Synthetic Methods, 91

The separation of the product may also cause difficulties: for example in Schöllkopfs synthesis of amino acids via bislactim ethers derived from diketopiperazines the final step requires the separation of two amino acid esters (for a reference see Scheme 22).

Evans D. A., 1982, Topics in Stereochemistry, 1

Evans D. A., 1984, Asymmetric Synthesis, 1

10.1016/B978-0-12-507703-3.50007-5

Gage J. R., 1990, Organic Syntheses, 77

Gage J. R., 1990, Organic Syntheses, 83

Heathcock C. H., 1992, Modern Synthetic Methods, 1

Seyden‐Penne J., 1995, Chiral Auxiliaries and Ligands in Asymmetric Synthesis

Ager D. J., 1996, Asymmetric Synthetic Methodology

Coppola G. M., 1987, Asymmetric Synthesis

10.1016/0957-4166(95)00377-0

“Amino Acids and their Derivatives as Stoichiometric Auxiliaries in Asymmetric Synthesis”:A.Studer Synthesis1996 793–815.

10.1016/S0957-4166(00)80465-6

10.1021/jo00125a029

10.1002/hlca.19870700727

Egli M., 1989, Chimia, 43, 4

10.1021/ja00189a042

10.1002/ange.19931051212

10.1002/anie.199317651

O.Bezençon Dissertation No. 11350 ETH Zürich 1995;

O.Bezençon D.Seebach Liebigs Ann. Chem.1996 1259–1276.

10.1002/hlca.19950780512

10.1016/S0040-4039(00)99269-4

10.1016/S0040-4020(01)80540-8

10.1021/jo00383a038

10.1016/S0957-4166(00)86252-7

10.1002/jhet.5570270103

Kaneko C., 1992, Organic Synthesis in Japan. Past, Present, and Future, 175

10.1016/S0040-4020(01)96260-X

10.1021/ja00120a009

10.1002/ange.19860980426

10.1002/anie.198603451

1986, Angew. Chem. Int. Ed. Engl., 98, 842

10.1016/S0040-4020(01)86036-1

M.Hoffmann presently unpublished results;

Dissertation ETH Zürich.

10.1002/hlca.19920750320

10.1002/hlca.19880710541

Seebach D., 1991, Chimia, 45, 114, 10.2533/chimia.1991.114

10.1021/jo00021a050

D.Blaser D.Seebach Liebigs Ann. Chem.1991 1067–1078.

10.1002/hlca.19910740803

D.Seebach A. R.Sting M.Hoffmann J. N.Kinkel M.Schulte E.Küsters unpublished results.

“Optically Active 1‐Acyl‐3‐alkyl‐2‐tbutyl‐4‐imidazolidinone Production From Racemic 3‐Alkyl‐2‐tbutyl‐4‐imidazolidinone by Optical Resolution and Acylation”:D.Seebach R.Fitzi(Degussa AG) DE‐B 3604591 1987;

“Preparation of Optically Active 1 3‐Imidazolidin‐4‐ones as Intermediates for Optically Active Amino Acids”:D.Seebach K.Drauz M.Kottenhahn H.Lotter M.Schwarm(Degussa AG) DE‐B 4137186 1991;

DE‐B 4137663 1991

1993, Chem. Abstr., 119, 180781

A. R.Sting Dissertation No. 11669. ETH Zürich 1996;

A. R.Sting D.Seebach unpublished results.

Boc‐BMI Bz‐BMI and Z‐BMI are commercially available in both enantiomeric forms from the following companies: Aldrich Chemical Company Fluka Chemie AG Interchim s. a. (France) E. Merck (Germany) Senn Chemicals AG (Switzerland) Wako Chemicals (USA).

10.1016/S0040-4020(01)80744-4

D.Seebach H. M.Bürger C. P.Schickli Liebigs Ann. Chem.1991 669–684.

K.Suzuki D.Seebach Liebigs Ann. Chem.1992 51–61.

D.Seebach E.Pfammatter V.Gramlich T.Bremi F.Kühnle S.Portmann I.Tironi Liebigs Ann. Chem.1992 1145–1151.

10.1002/hlca.19940770728

10.3987/COM-94-S44

S.Blank D.Seebach Liebigs Ann. Chem.1993 889–896.

Al‐Darwich M. J., 1994, J. Labelled Compds. Radiopharm., 35, 108

For example see the discussion about “flustrates” in Section 2.2 of ref. [261].

10.1002/ange.19901021118

10.1002/anie.199013201

10.1002/hlca.19920750522

10.1002/hlca.19940770520

For example the addition of a cuprate to an alkylidene‐Boc‐BMI derivative is completely selective (rel. topicity 1 4‐lk) by NMR analysis even though three bonds and three trigonal centers separate the inducing and newly formed stereogenic centers (XXVII → XXVIII) [134 253]. It is even moresurprising that the reaction of the dienylideneXXIXwith dibutylcuprate leads to a single productXXX(to date of unknown configuration) although five bonds separate the stereogenic acetal center and the site of substitution in the substrate (see ref. [253] and footnote [27] therein). Stereogenic centers positioned in a 1 5‐fashion result from the 1 2‐ or 1 4‐addition of the dienolateXXXIof 2‐tert‐butyl‐6‐methyl‐1 3‐dioxin‐4‐one at the 5‐ and 1′‐position to an aliphatic aldehyde (→XXXII) or enal (→XXXIII) respectively [264 265].

10.1002/ange.19891010422

10.1002/anie.198904721

10.1002/cber.19911240823

Nógrádi M., 1995, Stereoselective Synthesis—A Practical Approach

Reactions of 4‐methyl and 4‐trifluoromethyldioxinones with Cu‐doped benzyl Grignard reagents (to giveXXXIVandXXXV respectively) under identical conditions. In the first case the standardtransaddition (of the benzylic C atom) occurs but the second example shows acisaddition (of theparaC atom) with concomitant formation of the quinoid system [156 157] We have previously called F‐containing reactants “flustrates” [261].

As is evident from the discussion in ref. [29] it has been accepted for many years (work of Creger and Pfeffer) that deuterolysis of an enolate produced by the use of LDA is not a reliable method for determining the degree of enolate formation.

10.1002/ange.19951070406

10.1002/anie.199504331

One further equivalent of Li‐amide is produced such that the desired product of the reaction with electrophiles is now at the mercy of this strong base!

The stereoelectronic barrier already discussed in Section 3 which protects the corresponding enolate from facile β‐elimination is nowhere near as high when the leaving group is RS−in place of RO−. When the rules for cyclization (the reverse of this elimination) were initially proposed Baldwin explicitly stated that these are only valid for cases in which no elements of the second or a higher period are involved (see also Scheme 6 and ref. [111a]).

“The Synthetic Utility of α‐Amino‐Alkoxides”:D. L.Comins Synlett1992 615–625.

10.1002/hlca.19820650114

10.1021/ja00208a026

Such adducts of RXLi and carbonyl groups appear to be involved in other reactions of Li‐enolates and possibly play a much larger role than previously thought [272]. They could for example be responsible for the 2:1 reactions of aldehydes with Li‐enolates and also possibly for the known stabilization of Li‐aldolates against elimination to give α β‐unsaturated carbonyl compounds (seeXXXVI→XXXVIIandXXXVIII→XXXIX→XL[293]).

For the first attempts at explaining a few of the observed effects see ref. [48].

See ref. [227 b].

10.1021/jo01267a002

See footnotes [41–45] in ref. [23] and the general discussion in ref. [254].

10.1002/ange.19881001223

10.1002/anie.198817181

10.1002/cber.19901231225

10.1002/cber.19901231227

See Section 3 and Schemes 5 and 6 for references to the literature.

The alternative course of the cyclization reaction when transition metal acetalization catalysts are used has already been pointed out in Section 3 [57].

See the bicyclic azetidine carboxylic acid proline thiaproline hydroxyproline and pyroglutamic acid derivatives in Section 3 Schemes 6 and 28 Table C in the appendix and ref. [91].

See Section 3 and ref. [92] for references to the literature.

10.1021/ja00105a085

10.1002/hlca.19880710527

For example compare the benzylation of the dioxolane carboxylictert‐butylthioester (d.r. = 80:20 cis[93 102]) with that of theN‐formyloxazo‐lidinecarboxylic acid methyl ester (d.r. = 98.5:1.5 trans[93 100]) and also with the methylation ofN‐formylthiazolidinecarboxylic acid methyl ester (d.r. > 98:2 trans[106]). See the equations in the second line of Scheme 29 b Section 3 and Table B.

See our work on NCS reactions [133 134].

Reactions at radical centers of the heterocycle with formation of CC and CH bonds have been studied by Beckwith et al. [135]. Furthermore see the radical reactions of methylenedioxanones performed by B. Giese et al. (discussion and references in [290]).

Curran D. P., 1996, Stereochemistry of Radical Reactions—Concepts, Guidelines, and Synthetic Applications

Zimmerman H. E., 1957, J. Am. Chem. Soc., 79

See ref. [178 a].

10.1002/cber.19931261225

Dale J., 1978, Stereochemie und Konformationsanalyse

10.1021/cr60254a001

10.1021/cr00098a009

10.1021/ja00013a041

10.1002/hlca.19780610839

The value of almost 20 kcal mol−1of the partial amide C = N bond corresponds to practically a third of that of the C = C bond.

For example see the data in Table 1 of both refs. [62] and [178a] and also Table 4 of ref. [143].

10.1021/ja00005a049

10.1021/ja00338a027

10.1071/CH9700547

10.1016/S0040-4039(00)85144-8

10.1016/S0040-4039(00)84765-6

10.1021/ja00219a039

Following a suggestion of B. Trost during a discussion with R. W. Hoffmann the rather unfortunate expression “contrasteric” has been used in the literature for this effect [95 98].

In previous publications [93 102] we have suggested that thecisselectivity could be due to the bicyclic nature of the dioxolane carboxylic ester enolate which is attacked by the electrophile at theexoface that is cisto the existing substituent (seeXLIIIand compare the reactions of the bicyclic enolates derived from proline hydroxyproline thiaproline azetidine carboxylic acid and pyroglutamic acid Section 3 and Table (B). The chelate structure of the Li‐enolate of α‐RO‐substituted carbonyl compounds has been established by NMR analysis of the corresponding silyl enol ether [31 227].

10.1021/ja00305a014

10.1016/S0040-4039(00)95224-9

Like the parent esters [312] chelated enolates such as those from β‐ketoesters [310] or from α‐dialkylaminoesters [311] adopt a planar arrangement.

10.1139/v82-368

10.1016/S0020-1693(00)81551-0

10.1002/hlca.19820650528

10.1016/S0040-4039(01)83072-0

See the examples in ref. [82] and references therein.

See also Fig. 7 in ref. [301].

Compare with the X‐ray crystal structure analysis of an alkylidene‐Boc‐BMI‐derivative in ref. [62] and the legend of Scheme 31.

R.Naef Dissertation No. 7442 ETH Zürich 1983.

R.Fitzi Dissertation No. 8654 ETH Zürich 1988.

S. G.Müller Dissertation No. 8616 ETH Zürich 1988;

U.Gysel Dissertation No. 9473 ETH Zürich 1991.

Forschung Chromatographie E.Merck Darmstadt (Germany).

Steckhahn E., 1992, Modern Methodology in Organic Synthesis, 323

10.1021/jo00094a038

10.1016/S0040-4020(01)86182-2

10.1016/S0040-4039(01)81432-5

10.1021/jo00047a005

10.1002/hlca.19910740414

10.1016/0957-4166(95)00011-D

10.1016/S0040-4039(00)60058-8

“Process for Preparation of α‐Alkyl Amino Acids”:J. S.Amato L. M.Weinstock S.Karady(Merck & Co.) US‐A 4508921 1985.

10.1080/07328309008543852

10.1021/jo00053a006

10.1021/jo00104a022

10.1016/S0040-4020(01)82102-5

10.5059/yukigoseikyokaishi.52.888

10.1080/00268949108035671

T.Früh G. M. R.Tombo Synlett1994 727–728.

K.Krohn H.Rieger Liebigs Ann. Chem.1987 515–520.

10.1016/S0040-4039(01)80561-X

10.1002/cber.19941270824

10.1021/jo00106a023

10.1016/0040-4039(95)01823-Z

When benzaldehyde is used as the electrophile the bicyclic productXLIVis formed [99].

10.1071/CH9920479

10.1002/prac.19953370126

M.Sato Y.Abe C.Kaneko J. Chem. Soc. Perkin Trans. 11990 1779–1783.

10.1002/cber.19891220220

10.1016/S0040-4039(00)60939-5

10.1016/S0040-4039(00)70684-8

Hörnfeldt K., 1995, Synthesis and Applications of Isotopically Labelled Compounds 1994, 367

10.1016/0957-4166(94)80088-X

10.1016/0969-8043(94)90051-5

10.1002/hlca.19950780810

10.1016/0022-1139(94)03085-E

Lemaire C., 1993, J. Labelled Compd. Radiopharm., 32, 139

10.1016/0969-8043(93)90141-V

Damhaut P., 1994, J. Labelled Compds. Radiopharm., 35, 178

10.1002/chem.19950010707

Hydroxyalkylation with acetone yields the followingXLV[71]. In the reaction with aldehydes if the reaction mixture is allowed to warm to room temperature before workup the rearranged productXLVIis formed as virtually the only product [71].

M.Mehlführer H.Berner K.Thirring J. Chem. Soc. Chem. Commun.1994 1291–1291.

10.1021/jo00098a045

10.1016/0040-4020(95)00091-L

10.1021/jo00027a006

A portion of the aldol product cyclizes with formation of the carbamateXLVII.

The reversal of relative topicity between the addition ofXLVIIto a “normal” aliphatic and an aromatic aldehyde [233 241] would be consistent with a chair (→XLIX) or with a boat‐type transition state (→L) (in the case of a 3‐benzyloxyaldehyde the topicity is once again reversed [365]).

K.Matsuda unpublished results (1995).

See refs. [39 227c].

R.Amstutz Dissertation No. 7210 ETH Zürich 1982;

J.Hansen Dissertation No. 7863 ETH Zürich 1985.

Häner R., 1984, Chimia, 38, 255

10.1021/jo00288a027

10.1016/S0040-4039(00)88726-2