Selenium nanoparticles reduce oxidative stress-induced cardiomyocyte apoptosis in ascites syndrome in broiler chickens via the ATF6-DR5 signaling pathway
Tóm tắt
Từ khóa
Tài liệu tham khảo
Boostani, A., A.A. Sadeghi, S.N. Mousavi, M. Chamani, and N. Kashan. 2015. Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livestock Science 178: 330–336. https://doi.org/10.1016/j.livsci.2015.05.004.
Cao, X., M. Fu, R. Bi, X. Zheng, B. Fu, S. Tian, C. Liu, Q. Li, and J. Liu. 2021. Cadmium induced BEAS-2B cells apoptosis and mitochondria damage via MAPK signaling pathway. Chemosphere 263: 128346. https://doi.org/10.1016/j.chemosphere.2020.128346.
Chen, G., J. Wu, and C. Li. 2014. Effect of different selenium sources on production performance and biochemical parameters of broilers. Journal of Animal Physiology and Animal Nutrition 98 (4): 747–754. https://doi.org/10.1111/jpn.12136.
Cheng, S., X. Liu, P. Liu, G. Li, X. Guo, G. Hu, L. Li, C. Wu, Z. Xu, Q. Zhou, J. Jiang, S. Luo, H. Huang, and L. Ping. 2021a. Dysregulated expression of mRNA and SNP in pulmonary artery remodeling in ascites syndrome in broilers. Poultry Science 100 (3): 100877. https://doi.org/10.1016/j.psj.2020.11.054.
Cheng, Y., A. Shen, X. Wu, Z. Shen, X. Chen, J. Li, L. Liu, X. Lin, M. Wu, Y. Chen, J. Chu, and J. Peng. 2021b. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 133: 111022. https://doi.org/10.1016/j.biopha.2020.111022.
Chu, Y., L. Li, Y. Liu, Y. Wu, H. Bai, J. Liu, X. Yuan, and Z. Zhang. 2020. FGF1 inhibits H2O2-induced mitochondrion-dependent apoptosis in H9c2 cells. Die Pharmazie 75 (7): 335–338. https://doi.org/10.1691/ph.2020.0427.
Del Re, D.P., D. Amgalan, A. Linkermann, Q. Liu, and R.N. Kitsis. 2019. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiological Reviews 99 (4): 1765–1817. https://doi.org/10.1152/physrev.00022.2018.
Elimam, H., J. Papillon, T. Takano, and A.V. Cybulsky. 2015. Calcium-independent phospholipase A2γ enhances activation of the ATF6 transcription factor during endoplasmic reticulum stress. The Journal of Biological Chemistry 290 (5): 3009–3020. https://doi.org/10.1074/jbc.M114.592261.
Estevez, H., E. Garcia-Calvo, J. Rivera-Torres, M. Vallet-Regí, B. González, and J.L. Luque-Garcia. 2021. Transcriptome analysis identifies novel mechanisms associated with the antitumor effect of chitosan-stabilized selenium nanoparticles. Pharmaceutics 13 (3): 356. https://doi.org/10.3390/pharmaceutics13030356.
Fan, W., B. Zhang, C. Wu, H. Wu, J. Wu, S. Wu, J. Zhang, X. Yang, L. Yang, Z. Hu, and X. Wu. 2021. Plantago asiatica L. seeds extract protects against cardiomyocyte injury in isoproterenol- induced cardiac hypertrophy by inhibiting excessive autophagy and apoptosis in mice. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 91: 153681. https://doi.org/10.1016/j.phymed.2021.153681.
Guo, M., B. Lu, J. Gan, S. Wang, X. Jiang, and H. Li. 2021. Apoptosis detection: A purpose-dependent approach selection. Cell Cycle 20 (11): 1033–1040. https://doi.org/10.1080/15384101.2021.1919830.
Hassanzadeh, M., J. Buyse, T. Toloei, and E. Decuypere. 2014. Ascites syndrome in broiler chickens: A review on the aspect of endogenous and exogenous factors interactions. The Journal of Poultry Science 51 (3): 229–241. https://doi.org/10.2141/jpsa.0130063.
Hoffmann, F.W., A.S. Hashimoto, B.C. Lee, A.H. Rose, R.V. Shohet, and P.R. Hoffmann. 2011. Specific antioxidant selenoproteins are induced in the heart during hypertrophy. Archives of Biochemistry and Biophysics 512 (1): 38–44. https://doi.org/10.1016/j.abb.2011.05.007.
Hotamisligil, G.S., and R.J. Davis. 2016. Cell signaling and stress responses. Cold Spring Harbor Perspectives in Biology 8 (10): a006072. https://doi.org/10.1101/cshperspect.a006072.
Hu, C.H., Y.L. Li, L. Xiong, H.M. Zhang, J. Song, and M.S. Xia. 2012. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Animal Feed Science and Technology 177 (3): 204–210. https://doi.org/10.1016/j.anifeedsci.2012.08.010.
Hu, L., Z. Wang, H. Li, J. Wei, F. Tang, Q. Wang, J. Wang, X. Zhang, and Q. Zhang. 2022. Icariin inhibits isoproterenol-induced cardiomyocyte hypertropic injury through activating autophagy via the AMPK/mTOR signaling pathway. Biochemical and Biophysical Research Communications 593: 65–72. https://doi.org/10.1016/j.bbrc.2022.01.029.
Huang, C.Y., J.S. Deng, W.C. Huang, W.P. Jiang, and G.J. Huang. 2020. Attenuation of lipopolysaccharide-induced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy. Nutrients 12 (6): 1742. https://doi.org/10.3390/nu12061742.
Khurana, A., S. Tekula, M.A. Saifi, P. Venkatesh, and C. Godugu. 2019. Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 111: 802–812. https://doi.org/10.1016/j.biopha.2018.12.146.
Kim, H.Y. 2013. The methionine sulfoxide reduction system: Selenium utilization and methionine sulfoxide reductase enzymes and their functions. Antioxidants & Redox Signaling 19 (9): 958–969. https://doi.org/10.1089/ars.2012.5081.
Lesnichaya, M., E. Karpova, and B. Sukhov. 2021. Effect of high dose of selenium nanoparticles on antioxidant system and biochemical profile of rats in correction of carbon tetrachloride-induced toxic damage of liver. Colloids and Surfaces. B, Biointerfaces 197: 111381. https://doi.org/10.1016/j.colsurfb.2020.111381.
Lu, M., D.A. Lawrence, S. Marsters, D. Acosta-Alvear, P. Kimmig, A.S. Mendez, A.W. Paton, J.C. Paton, P. Walter, and A. Ashkenazi. 2014. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science (New York, N.Y.) 345 (6192): 98–101. https://doi.org/10.1126/science.1254312.
Patra, A., and M. Lalhriatpuii. 2020. Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding-A review. Biological Trace Element Research 197 (1): 233–253. https://doi.org/10.1007/s12011-019-01959-1.
Qiao, N., J. Pan, Z. Kang, G. Liu, Z. Tang, and Y. Li. 2019. Effect of a background Ca(2+) entry pathway mediated by TRPC1 on myocardial damage of broilers with induced ascites syndrome. Avian pathology: Journal of the W.V.P.A 48 (5): 429–436. https://doi.org/10.1080/03079457.2019.1617834.
Rocca, C., T. Pasqua, L. Boukhzar, Y. Anouar, and T. Angelone. 2019. Progress in the emerging role of selenoproteins in cardiovascular disease: Focus on endoplasmic reticulum-resident selenoproteins. Cellular and Molecular Life Sciences: CMLS 76 (20): 3969–3985. https://doi.org/10.1007/s00018-019-03195-1.
Sadek, K.M., M.A. Lebda, T.K. Abouzed, S.M. Nasr, and M. Shoukry. 2017. Neuro- and nephrotoxicity of subchronic cadmium chloride exposure and the potential chemoprotective effects of selenium nanoparticles. Metabolic Brain Disease 32 (5): 1659–1673. https://doi.org/10.1007/s11011-017-0053-x.
Shi, S., Y. Shen, S. Zhang, Z. Zhao, Z. Hou, H. Zhou, J. Zou, and Y. Guo. 2017. Combinatory evaluation of transcriptome and metabolome profiles of low temperature-induced resistant ascites syndrome in broiler chickens. Scientific Reports 7 (1): 2389. https://doi.org/10.1038/s41598-017-02492-8.
So, J.S. 2018. Roles of endoplasmic reticulum stress in immune responses. Molecules and Cells 41 (8): 705–716. https://doi.org/10.14348/molcells.2018.0241.
Surai, P.F., and Ii. Kochish. 2020. Food for thought: Nano-selenium in poultry nutrition and health. Animal Health Research Reviews 21 (2): 103–107. https://doi.org/10.1017/s1466252320000183.
Touat-Hamici, Z., Y. Legrain, A.L. Bulteau, and L. Chavatte. 2014. Selective up-regulation of human selenoproteins in response to oxidative stress. The Journal of Biological Chemistry 289 (21): 14750–14761. https://doi.org/10.1074/jbc.M114.551994.
Wada, S., E. Hatano, T. Yoh, N. Nakamura, Y. Okuda, M. Okuno, Y. Kasai, K. Iwaisako, S. Seo, K. Taura, and S. Uemoto. 2018. CAAT/enhancer binding protein-homologous protein deficiency attenuates liver ischemia/reperfusion injury in mice. Liver Transplantation: Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 24 (5): 645–654. https://doi.org/10.1002/lt.25053.
Wan, M., K. Yin, J. Yuan, S. Ma, Q. Xu, D. Li, H. Gao, and X. Gou. 2022. YQFM alleviated cardiac hypertrophy by apoptosis inhibition and autophagy regulation via PI(3)K/AKT/mTOR pathway. Journal of Ethnopharmacology 285: 114835. https://doi.org/10.1016/j.jep.2021.114835.
Wang, J.X., X.J. Zhang, Q. Li, K. Wang, Y. Wang, J.Q. Jiao, C. Feng, S. Teng, L.Y. Zhou, Y. Gong, Z.X. Zhou, J. Liu, J.L. Wang, and P.F. Li. 2015. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circulation Research 117 (4): 352–363. https://doi.org/10.1161/circresaha.117.305781.
Wang, S., P. Binder, Q. Fang, Z. Wang, W. Xiao, W. Liu, and X. Wang. 2018. Endoplasmic reticulum stress in the heart: Insights into mechanisms and drug targets. British Journal of Pharmacology 175 (8): 1293–1304. https://doi.org/10.1111/bph.13888.
Wideman, R.F., D.D. Rhoads, G.F. Erf, and N.B. Anthony. 2013. Pulmonary arterial hypertension (ascites syndrome) in broilers: A review. Poultry Science 92 (1): 64–83. https://doi.org/10.3382/ps.2012-02745.
Yang, Y., J. Qiao, H. Wang, M. Gao, D. Ou, J. Zhang, M. Sun, X. Yang, X. Zhang, and Y. Guo. 2007. Calcium antagonist verapamil prevented pulmonary arterial hypertension in broilers with ascites by arresting pulmonary vascular remodeling. European Journal of Pharmacology 561 (1–3): 137–143. https://doi.org/10.1016/j.ejphar.2007.01.036.
Yang, X., Y. Fu, J. Zhang, J. Liu, X. Liu, Y. Peng, S.L. Kyin, M. Zhang, and D. Zhou. 2023. Preparation, characterization, and antioxidant and antiapoptotic activities of biosynthesized nano-selenium by yak-derived Bacillus cereus and chitosan-encapsulated chemically synthesized nano-selenium. International Journal of Biological Macromolecules 242: 124708. https://doi.org/10.1016/j.ijbiomac.2023.124708.
Zeng, G., C. Lian, W. Li, H. An, Y. Han, D. Fang, and Q. Zheng. 2022. Upregulation of FAM129B protects cardiomyocytes from hypoxia/reoxygenation-induced injury by inhibiting apoptosis, oxidative stress, and inflammatory response via enhancing Nrf2/ARE activation. Environmental Toxicology 37 (5): 1018–1031. https://doi.org/10.1002/tox.23461.
Zhang, J., C.J. Schmidt, and S.J. Lamont. 2018. Distinct genes and pathways associated with transcriptome differences in early cardiac development between fast- and slow-growing broilers. PLoS One 13 (12): e0207715. https://doi.org/10.1371/journal.pone.0207715.