Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents

Wiley - Tập 1 Số 3 - Trang 233-248 - 1973
John Yu1, Donald A. Fischman1, Theodore L. Steck1
1Departments of Biophysics, Biology, Anatomy, Medicine, and Biochemistry, University of Chicago, Chicago, Illinois 60637

Tóm tắt

AbstractTreatment of isolated human erythrocyte membranes with Triton X‐100 at ionic strength ⋍0.04 preferentially released all the glycerolipid and glycoprotein species. At low ionic strength, certain nonglycosylated polypeptides were also selectively solubilized. The liberated polypeptides were free of lipids, but some behaved as if associated into specific oligomeric complexes. Each detergent‐insoluble ghost residue appeared by electron microscopy to be a filamentous reticulum with adherent lipoid sheets and vesicles. The residues contained most of the membrane sphingolipids and the nonglycosylated proteins. The polypeptide elution profile obtained with nonionic detergents is therefore nearly reciprocal to that previously seen with a variety of agents which perturb proteins. These data afford further evidence that the externally‐oriented glycoproteins penetrate the membrane core where they are anchored hydrophobically, whereas the nonglycosylated polypeptides are, in general, bound by polar associations at the inner membrane surface. The filamentous meshwork of inner surface polypeptides may constitute a discrete, self‐associated continuum which provides rather than derives structural support from the membrance.

Từ khóa


Tài liệu tham khảo

Steck T. L., 1972, Membrane Molecular Biology, 27

10.1016/0304-4157(72)90004-4

10.1002/jss.400010307

10.1021/bi00789a030

10.1016/0009-8981(69)90349-0

10.1016/S0021-9258(18)84756-1

10.1093/ajcp/39.3_ts.311

10.1083/jcb.25.2.407

10.1016/0005-2736(72)90027-2

Sweeley C. C., 1969, Red Cell Membrane Structure and Function, 172

10.1146/annurev.bi.41.070172.003503

10.1042/bj1290333

Schick M. J., 1967, Nonionic Surfactants

10.1016/S0003-9861(71)80005-X

10.1073/pnas.69.6.1445

Morawiecki A., 1964, Biochim. Biophys. Acta, 83, 339

10.1016/0022-2836(72)90481-0

10.1042/bj1251109

10.1016/0006-291X(70)90962-9

10.1016/0005-2736(70)90162-8

10.1016/S0021-9258(18)62521-9

10.1073/pnas.61.3.1050

10.1016/S0006-291X(71)80093-1

10.1073/pnas.69.7.1972

10.1016/S0021-9258(19)44947-8

10.4049/jimmunol.107.5.1363

Yu A. C., 1973, Fed. Proc., 32, 1008

10.1016/0006-291X(72)90491-3

10.1073/pnas.69.2.318

10.1016/0006-291X(72)90679-1

10.1016/0005-2736(72)90252-0

10.1016/0005-2736(72)90164-2

10.1016/0304-4157(72)90012-3

10.1016/0005-2736(71)90119-2

10.1126/science.154.3757.1662

10.1016/0005-2736(72)90252-0

10.1016/0005-2736(71)90093-9

Steck T. L., 1972, Membrane Research, 71

10.1038/newbio231229a0

10.1016/0022-2836(71)90055-6

Marchesi V. T., 1969, Red Cell Membrane Structure and Function, 117

10.1016/0005-2736(70)90013-1

10.1083/jcb.51.1.265

10.1001/archinte.129.2.194

10.1016/S0021-9258(19)44393-7

10.1007/978-1-4684-3330-2_10

Choppin P. W., 1972, Membrane Research, 163

Parpart A. K., 1952, Modern Trends in Physiology and Biochemistry., 135

10.1002/jcp.1030630214

10.1016/0005-2736(72)90318-5

10.1016/0014-5793(72)80189-3

10.1016/0005-2736(71)90108-8

Rouser G., 1968, Biological Membranes: Physical Fact and Function, 5

10.1016/0005-2736(70)90163-X

McConnell H. M., 1972, Membrane Research, 27

10.1016/0022-2836(72)90374-9