Selective enhancing effect of metal ions on mutagenicity
Tóm tắt
We investigated the enhancing effect of metal ions on several mutagens and examined their mechanism of action. We performed the Ames tests on six mutagens, i.e., 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide, 4-nitroquinoline 1-oxide (4NQO), quercetin, 2-aminoanthracene (2-AA), benzo[a]pyrene, and 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b]indole, in the presence of five metal ions: Ca(II), Mg(II), Mn(II), Cu(II), and Zn(II). Cu(II) enhanced the mutagenicity of only 4NQO and reduced the mutagenicity of the other mutagens. Zn (II) enhanced the mutagenicity of only 2-AA. To clarify the mechanism underlying the enhancing effects of Cu(II), we examined the production of reactive oxygen species (ROS) and 8-oxoguanine (8-oxoG), a DNA damage marker, in human lung carcinoma A549 cells. Cu(II) induced a remarkable increase in intracellular ROS and 8-oxoG production in the presence of 4NQO. Our results suggest that the enhancing effect of Cu(II) and Zn(II) on the mutagenicity of specific mutagens is caused by an increase in ROS.
Tài liệu tham khảo
Wu T, Sempos CT, Freudenheim JL, Muti P, Smit E. Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol. 2004;14:195–201.
Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345:91–104.
Yamamoto A, Kohyama Y, Hanawa T. Mutagenicity evaluation of forty-one metal salts by the umu test. J Biomed Mater Res. 2002;59:176–83.
Sakano K, Oikawa S, Murata M, Hiraku Y, Kojima N, Kawanishi S. Mechanism of metal-mediated DNA damage induced by metabolites of carcinogenic 2-nitropropane. Mutat Res. 2001;479:101–11.
Francis AR, Shetty TK, Bhattacharya RK. Modifying role of dietary factors on the mutagenicity of aflatoxin B1: in vitro effect of trace elements. Mutat Res. 1988;199:85–93.
Ando M, Ueda K, Okamoto Y, Kojima N. Combined effects of manganese, iron, copper, and dopamine on oxidative DNA damage. J Health Sci. 2011;57:204–9.
Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983;113:173–215.
Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res. 2000;455:29–60.
Ames BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983;221:1256–64.
Hsie AW, Recio L, Katz DS, Lee CQ, Wagner M, Schenley RL. Evidence for reactive oxygen species inducing mutations in mammalian cells. Proc Natl Acad Sci U S A. 1986;83:9616–20.
Kasai H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A, Tanooka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis. 1986;7:1849–51.
Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991;349:431–4.
Kasai H, Chung MH, Jones DS, Inoue H, Ishikawa H, Kamiya H, et al. 8-Hydroxyguanine, a DNA adduct formed by oxygen radicals: its implication on oxygen radical-involved mutagenesis/carcinogenesis. J Toxicol Sci. 1991;16:95–105.
Gadupudi GS, Chung KT. Comparative genotoxicity of 3-hydroxyanthranilic acid and anthranilic acid in the presence of a metal cofactor Cu (II) in vitro. Mutat Res. 2011;726:200–8.
Hepel M, Stobiecka M, Peachey J, Miller J. Intervention of glutathione in pre-mutagenic catechol-mediated DNA damage in the presence of copper(II) ions. Mutat Res. 2012;735:1–11.
Burkitt MJ. Copper--DNA adducts. Methods Enzymol. 1994;234:66–79.
Chiou SH, Chang WC, Jou YS, Chung HM, Lo TB. Specific cleavages of DNA by ascorbate in the presence of copper ion or copper chelates. J Biochem. 1985;98:1723–6.
Yamamoto K, Kawanishi S. Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper (II) ion and hydrogen peroxide. J Biol Chem. 1989;264:15435–40.
Drouin R, Rodriguez H, Gao SW, Gebreyes Z, O'Connor TR, Holmquist GP, et al. Cupric ion/ascorbate/hydrogen peroxide-induced DNA damage: DNA-bound copper ion primarily induces base modifications. Free Radic Biol Med. 1996;21:261–73.
Lloyd DR, Phillips DH. Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat Res. 1999;424:23–36.
Nassi-Calò L, Mello-Filho C, Meneghini R. o-phenanthroline protects mammalian cells from hydrogen peroxide-induced gene mutation and morphological transformation. Carcinogenesis. 1989;10:1055–7.
Kagawa TF, Geierstanger BH, Wang AH, Ho PS. Covalent modification of guanine bases in double-stranded DNA. The 1.2-A Z-DNA structure of d(CGCGCG) in the presence of CuCl2. J Biol Chem. 1991;266:20175–84.
Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science. 1988;240:1302–9.
Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J. 1991;273:601–4.
Midorikawa K, Kawanishi S. Superoxide dismutases enhance H2O2-induced DNA damage and alter its site specificity. FEBS Lett. 2001;495:187–90.
Furukawa A, Oikawa S, Harada K, Sugiyama H, Hiraku Y, Murata M, et al. Oxidatively generated DNA damage induced by 3-amino-5-mercapto-1,2,4-triazole, a metabolite of carcinogenic amitrole. Mutat Res. 2010;694:7–12.
Okabayashi T. Mutagenic activity of 4-hydroxyaminoquinoline 1-oxide. Chem Pharm Bull. 1962;10:1221–6.
Yamamoto N, Fukuda S, Takebe H. Effect of a potent carcinogen, 4-nitroquinoline 1-oxide, and its reduced form, 4-hydroxylaminoquinoline 1-oxide, on bacterial and bacteriophage genomes. Cancer Res. 1970;30:2532–7.
Tada M. Seryl-tRNA synthetase and activation of the carcinogen 4-nitroguinoline 1-oxide. Nature. 1975;255:510–2.
Yamamoto K, Inoue S, Kawanishi S. Site-specific DNA damage and 8-hydroxydeoxyguanosine formation by hydroxylamine and 4-hydroxyaminoquinoline 1-oxide in the presence of Cu(II): role of active oxygen species. Carcinogenesis. 1993;14:1397–401.
Bhattacharya RK, Firozi PF, Aboobaker VS. Factors modulating the formation of DNA adduct by aflatoxin B1 in vitro. Carcinogenesis. 1984;5:1359–62.
Olson B, McDonald Jr J, Noblitt T, Li Y, Ley M. Modifying role of trace elements on the mutagenicity of benzo[a]pyrene. Mutat Res. 1995;335:21–6.
Jung Y, Surh Y. Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic Biol Med. 2001;30:1407–17.