Sự tinh thể hóa chọn lọc với khả năng lưu trữ lithium-ion ưu việt của các vật liệu vô cơ

Nanoscale Research Letters - Tập 7 - Trang 1-17 - 2012
Fei Liu1,2, Shuyan Song1, Dongfeng Xue1,2, Hongjie Zhang1
1State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People's Republic of China
2School of Chemical Engineering, Dalian University of Technology, Dalian, People’s Republic of China

Tóm tắt

Pin lithium-ion được coi là một phương pháp chính để sử dụng năng lượng hiệu quả hơn. Trong thập kỷ qua, các vật liệu điện cực nano đã được nghiên cứu một cách rộng rãi và đã mang đến cơ hội đạt được hiệu suất vượt trội cho các loại pin thế hệ tiếp theo yêu cầu mật độ năng lượng và công suất cao hơn cũng như tuổi thọ chu kỳ lâu hơn. Trong bài viết này, chúng tôi đã xem xét các hoạt động nghiên cứu gần đây về tinh thể hóa chọn lọc các vật liệu vô cơ thành các điện cực nano cho pin lithium-ion và thảo luận về cách mà tinh thể hóa chọn lọc có thể cải thiện hiệu suất điện cực của các vật liệu; ví dụ, việc tiếp xúc chọn lọc với các bề mặt vuông góc với các đường dẫn khuếch tán ion có thể gia tăng đáng kể độ dẫn ion của các vật liệu loại chèn vào; tinh thể hóa các vật liệu loại hợp kim thành các mảng dây nano đã chứng minh là một giải pháp tốt cho vấn đề phân tán điện cực; và xây dựng các vật liệu loại chuyển đổi thành các cấu trúc rỗng là một phương pháp hiệu quả để giảm thiểu biến đổi thể tích trong quá trình chu kỳ. Mục tiêu chính của bài đánh giá này là để chứng minh tầm quan trọng của tinh thể hóa trong các ứng dụng lưu trữ năng lượng.

Từ khóa

#pin lithium-ion #vật liệu vô cơ #tinh thể hóa chọn lọc #hiệu suất điện cực #năng lượng lưu trữ

Tài liệu tham khảo

Liu J, Liu F, Gao K, Wu J, Xue D: Recent developments in the chemical synthesis of inorganic porous capsules. J Mater Chem 2009, 19: 6073–6084. 10.1039/b900116f Yan X, Xu D, Xue D: SO42-ions direct the one-dimensional growth of 5Mg(OH)2·MgSO4·2H2O. Acta Mater 2007, 55: 5747–5757. 10.1016/j.actamat.2007.06.023 Liu F, Xue D: Controlled fabrication of Nb2O5hollow nanospheres and nanotubes. Mod Phys Lett B 2009, 23: 3769–3775. 10.1142/S0217984909021818 Liu J, Xue D: Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv Mater 2008, 20: 2622–2626. 10.1002/adma.200800208 Luo C, Xue D: Mild, quasireverse emulsion route to submicrometer lithium niobate hollow spheres. Langmuir 2006, 22: 9914–9918. 10.1021/la062193v Wu J, Xue D: Controlled etching of hexagonal ZnO architectures in an alcohol thermal process. Mater Res Bull 2010, 45: 295–299. 10.1016/j.materresbull.2009.12.010 Liu F, Xue D: One-step solution-based strategy to 3D superstructures of Nb2O5-LiF. Nanosci Nanotechnol Lett 2009, 1: 66–71. 10.1166/nnl.2009.1012 Wu J, Xue D: Crystallization of NaNbO3microcubes by a solution-phase ion exchange route. Cryst Eng Comm 2011, 13: 3773–3781. Liu F, Xue D: Assembly of nanoscale building blocks at solution/solid interfaces. Mater Res Bull 2010, 45: 329–332. 10.1016/j.materresbull.2009.12.009 Xu J, Xue D: Five branching growth patterns in the cubic crystal system: a direct observation of cuprous oxide microcrystals. Acta Mater 2007, 55: 2397–2406. 10.1016/j.actamat.2006.11.032 Liu F, Xue D: Self-construction of core-shell TiO2: a colloidal-molecular mediated recrystallization process. Nanosci Nanotechnol Lett 2011, 3: 389–393. 10.1166/nnl.2011.1174 Liu F, Xue D: CuS hierarchical architectures by a combination of bottom-up and top-down method. Nanosci Nanotechnol Lett 2011, 3: 440–445. 10.1166/nnl.2011.1172 Chiang YM: Building a better battery. Science 2010, 330: 1485–1486. 10.1126/science.1198591 Kang J, Ko Y, Park J, Kim D: Origin of capacity fading in nano-sized Co3O4electrodes: electrochemical impedance spectroscopy study. Nanoscale Res Lett 2008, 3: 390–394. 10.1007/s11671-008-9176-7 Seo SD, Jin YH, Lee SH, Shim HW, Kim DW: Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes. Nanoscale Res Lett 2011, 6: 397. 10.1186/1556-276X-6-397 Tarascon JM: Key challenges in future Li-battery research. Phil Trans R Soc A 2010, 368: 3227–3241. 10.1098/rsta.2010.0112 Liu F, Song S, Xue D, Zhang H: Folded structured graphene paper for high performance electrode materials. Adv Mater 2012, 24: 1089–1094. 10.1002/adma.201104691 Tarascon JM, Armand M: Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414: 359–367. 10.1038/35104644 Malik R, Zhou F, Ceder G: Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat Mater 2011, 10: 587–590. 10.1038/nmat3065 Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K: High-energy cathode material for long-life and safe lithium batteries. Nat Mater 2009, 8: 320–324. 10.1038/nmat2418 Song H, Lee KT, Kim MG, Nazar LF, Cho J: Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Mater 2010, 20: 3818–3834. Ji L, Lin Z, Alcoutlabi M, Zhang X: Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 2011, 4: 2682–2699. 10.1039/c0ee00699h Cheng F, Liang J, Tao Z, Chen J: Functional materials for rechargeable batteries. Adv Mater 2011, 23: 1695–1715. 10.1002/adma.201003587 Yuan L, Wang Z, Zhang W, Hu X, Chen J, Huang Y, Goodenough JB: Development and challenges of LiFePO4cathode material for lithium-ion batteries. Energy Environ Sci 2011, 4: 269–284. 10.1039/c0ee00029a Goodenough JB, Kim Y: Challenges for rechargeable Li batteries. Chem Mater 2010, 22: 587–603. 10.1021/cm901452z Huang J, Zhong L, Wang C, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan H, Qi L, Kushima A, Li J: In situ observation of the electrochemical lithiation of a single SnO2nanowire electrode. Science 2010, 330: 1515. 10.1126/science.1195628 Arico AS, Bruce PG, Scrosati B, Tarascon JM, Schalkwijk WV: Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 2005, 4: 366–377. 10.1038/nmat1368 Bruce PG, Scrosati B, Tarascon JM: Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 2008, 47: 2930–3946. 10.1002/anie.200702505 Liu C, Li F, Ma L, Cheng H: Advanced materials for energy storage. Adv Mater 2010, 22: E28-E62. 10.1002/adma.200903328 Guo Y, Hu J, Wan L: Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 2008, 20: 2878–2887. 10.1002/adma.200800627 Cao A, Hu H, Liang H, Wan L: Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed 2005, 44: 4391–4395. 10.1002/anie.200500946 Goodenough JB, Kim Y: Challenges for rechargeable batteries. J Power Sources 2011, 196: 6688–6694. 10.1016/j.jpowsour.2010.11.074 Lee KT, Cho J: Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 2011, 6: 28–41. 10.1016/j.nantod.2010.11.002 Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon JM, Masquelier C: Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater 2008, 7: 741–747. 10.1038/nmat2245 Meethong N, Kao YH, Carter WC, Chiang YM: Comparative study of lithium transport kinetics in olivine cathodes for Li-ion batteries. Chem Mater 2010, 22: 1088–1097. 10.1021/cm902118m Wang H, Yang Y, Liang Y, Cui L, Casalongue HS, Li Y, Hong G, Cui Y, Dai H: LiMn1-xFexPO4nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 2011, 50: 7364–7368. 10.1002/anie.201103163 Nan C, Lu J, Chen C, Peng Q, Li Y: Solvothermal synthesis of lithium iron phosphate nanoplates. J Mater Chem 2011, 21: 9994–9996. 10.1039/c0jm04126b Luo WB, Dahn JR: Comparative study of Li[Co1-zAlz]O2prepared by solid-state and co-precipitation methods. Electrochim Acta 2009, 54: 4655–4661. 10.1016/j.electacta.2009.03.068 Winter M, Besenhard JO, Spahr ME, Novák P: Insertion electrode materials for rechargeable lithium batteries. Adv Mater 1998, 10: 725–763. 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y: Spinel LiMn2O4nanorods as lithium ion battery cathodes. Nano Lett 2008, 8: 3948–3952. 10.1021/nl8024328 Cheng F, Wang H, Zhu Z, Wang Y, Zhang T, Tao Z, Chen J: Porous LiMn2O4nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ Sci 2011, 4: 3668–3675. 10.1039/c1ee01795k Wang Y, Cao G: New developments of nanostructured cathode materials for highly efficient lithium ion batteries. Adv Mater 2008, 20: 2251–2269. 10.1002/adma.200702242 Liu J, Xue D: Cation-induced coiling of vanadium pentoxide nanobelts. Nanoscale Res Lett 2010, 5: 1619–1626. 10.1007/s11671-010-9685-z Liu J, Zhou Y, Wang J, Pan Y, Xue D: Template-free solvothermal synthesis of yolk-shell V2O5microspheres. Chem Commun 2011, 47: 10380–10382. 10.1039/c1cc13779d Barpanda P, Ati M, Melot BC, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr SA, Jumas JC, Tarascon JM: A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat Mater 2011, 10: 772–779. 10.1038/nmat3093 Lee DK, Shim HW, An JS, Cho CM, Cho IS, Hong KS, Kim DW: Synthesis of heterogeneous Li4Ti5O12nanostructured anodes with long-term cycle stability. Nanoscale Res Lett 2010, 5: 1585–1589. 10.1007/s11671-010-9680-4 Zhu GN, Liu HJ, Zhuang JH, Wang CX, Wang YG, Xia YY: Carbon-coated nano-sized Li4Ti5O12nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ Sci 2011, 4: 4016–4022. 10.1039/c1ee01680f Kang E, Jung YS, Kim GH, Chun J, Wiesner U, Dillon AC, Kim JK, Lee J: Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method. Adv Funct Mater 2011, 21: 4349–4357. 10.1002/adfm.201101123 Han JT, Liu DQ, Song SH, Kim Y, Goodenough JB: Lithium ion intercalation performance of niobium oxides: KNb5O13and K6Nb10.8O30. Chem Mater 2009, 21: 4753–4755. 10.1021/cm9024149 Lu YH, Goodenough JB, Dathar GKP, Henkelman G, Wu J, Stevenson K: Behavior of Li guest in KNb5O13host with one-dimensional tunnels and multiple interstitial sites. Chem Mater 2011, 23: 3210–3216. 10.1021/cm200958r Han JT, Goodenough JB: 3-V full cell performance of anode framework TiNb2O7/Spinel LiNi0.5Mn1.5O4. Chem Mater 2011, 23: 3404–3407. 10.1021/cm201515g Han JT, Huang YH, Goodenough JB: New anode framework for rechargeable lithium batteries. Chem Mater 2011, 23: 2027–2029. 10.1021/cm200441h Szczech JR, Jin S: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 2011, 4: 56–72. 10.1039/c0ee00281j Zhang WJ: Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 2011, 196: 877–885. 10.1016/j.jpowsour.2010.08.114 Park CM, Sohn HJ: Quasi-intercalation and facile amorphization in layered ZnSb for li-ion batteries. Adv Mater 2010, 22: 47–52. 10.1002/adma.200901427 Teki R, Datta MK, Krishnan P, Parker TC, Lu TM, Kumta PN, Koratkar N: Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 2009, 5: 2236–2242. 10.1002/smll.200900382 Kasavajjula U, Wang CS, Appleby AJ: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 2007, 163: 1003–1039. 10.1016/j.jpowsour.2006.09.084 Yang J, Winter M, Besenhard JO: Li- alloy anodes for lithium-ion-batteries. Solid State Ionics 1996, 90: 281–287. 10.1016/S0167-2738(96)00389-X Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y: High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008, 3: 31–35. 10.1038/nnano.2007.411 Cao F, Deng J, Xin S, Ji H, Schmidt OG, Wan L, Guo Y: Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv Mater 2011, 23: 4415–4420. 10.1002/adma.201102062 Cheng L, Yan J, Zhu G, Luo J, Wang C, Xia Y: General synthesis of carbon-coated nanostructure Li4Ti5O12as a high rate electrode material for Li-ion intercalation. J Mater Chem 2010, 20: 595–620. 10.1039/b914604k Wang J, Zhong C, Chou S, Liu H: Flexible free-standing graphene-silicon composite film for lithium-ion batteries. Electrochem Commun 2010, 12: 1467–1470. 10.1016/j.elecom.2010.08.008 Chan CK, Patel RN, O'Connell MJ, Korgel BA, Cui Y: Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 3: 1443–1450. Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 2010, 9: 353–358. 10.1038/nmat2725 Chen Y, Huang QZ, Wang J, Wang Q, Xue JM: Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications. J Mater Chem 2011, 21: 17448–17453. 10.1039/c1jm13572d Liu J, Xue D: Sn-based nanomaterials converted from SnS nanobelts: facile synthesis, characterizations, optical properties and energy storage performances. Electrochim Acta 2010, 56: 243–250. 10.1016/j.electacta.2010.08.091 Ji L, Tan Z, Kuykendall T, An EJ, Fu Y, Battaglia V, Zhang Y: Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy Environ Sci 2011, 4: 3611–3616. 10.1039/c1ee01592c Liu J, Xue D: Hollow nanostructured anode materials for Li-ion batteries. Nanoscale Res Lett 2010, 5: 1525–1534. 10.1007/s11671-010-9728-5 Liu J, Xia H, Xue D, Lu L: Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 2009, 131: 12086–12087. 10.1021/ja9053256 Cabana J, Monconduit L, Larcher D, Palacín MR: Beyond intercalation-based Li-ion batteries; the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 2010, 22: E170-E192. 10.1002/adma.201000717 Liu J, Xia H, Lu L, Xue D: Anisotropic Co3O4porous nanocapsules toward high-capacity Li-ion batteries. J Mater Chem 2010, 20: 1506–1510. 10.1039/b923834d Li Y, Tan B, Wu Y: Mesoporous Co3O4nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 2008, 8: 265–270. 10.1021/nl0725906 Li B, Cao H, Shao J, Qu M: Enhanced anode performances of the Fe3O4-Carbon-rGO three dimensional composite in lithium ion batteries. Chem Commun 2011, 47: 10374–10376. 10.1039/c1cc13462k Wang B, Chen JS, Wu HB, Wang Z, Lou XW: Quasiemulsion-templated formation of α-Fe2O3hollow spheres with enhanced lithium storage properties. J Am Chem Soc 2011, 133: 17146–17148. 10.1021/ja208346s Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 2006, 5: 567–573. 10.1038/nmat1672