Selective Stimulation of Caveolar Endocytosis by Glycosphingolipids and Cholesterol
Tóm tắt
Internalization of some plasma membrane constituents, bacterial toxins, and viruses occurs via caveolae; however, the factors that regulate caveolar internalization are still unclear. Here, we demonstrate that a brief treatment of cultured cells with natural or synthetic glycosphingolipids (GSLs) or elevation of cholesterol (either by acute treatment with mβ-cyclodextrin/cholesterol or by alteration of growth conditions) dramatically stimulates caveolar endocytosis with little or no effect on other endocytic mechanisms. These treatments also stimulated the movement of GFP-labeled vesicles in cells transfected with caveolin-1-GFP and reduced the number of surface-connected caveolae seen by electron microscopy. In contrast, overexpression of caveolin-1 decreased caveolar uptake, but treatment with GSLs reversed this effect and stimulated caveolar endocytosis. Stimulation of caveolar endocytosis did not occur using ceramide or phosphatidylcholine and was not due to GSL degradation because similar results were obtained using a nonhydrolyzable GSL analog. Stimulated caveolar endocytosis required src kinase and PKC-α activity as shown by i) use of pharmacological inhibitors, ii) expression of kinase inactive src or dominant negative PKCα, and iii) stimulation of src kinase activity upon addition of GSLs or cholesterol. These results suggest that caveolar endocytosis is regulated by a balance of caveolin-1, cholesterol, and GSLs at the plasma membrane.
Từ khóa
Tài liệu tham khảo
Aktories, K., Schmidt, G., and Just, I. (2000). Rho GTPases as targets of bacterial protein toxins.Biol. Chem.381,421-426.
Albrecht, B., Putz, U., and Schwarzmann, G. (1995). Synthesis of fluorescent and radioactive analogues of two lactosylceramides and glucosylceramide containing b-thioglycosidic bonds that are resistant to enzymatic degradation.Carbohydrate Res.276,289-308.
Benmerah, A., Bayrou, M., Cerf-Bensussan, N., and Dautry-Varsat, A. (1999). Inhibition of clathrin-coated pit assembly by an Eps15 mutant.J. Cell Sci.112,1303-1311.
Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y. (2002). A monomeric red fluorescent protein.Proc. Natl. Acad. Sci. USA99,7877-7882.
Carver, L.A., and Schnitzer, J.E. (2003). Caveolae: mining little caves for new cancer targets.Nat. Rev. Cancer3,571-581.
Chen, C.S., Martin, O.C., and Pagano, R.E. (1997). Changes in the spectral properties of a plasma membrane lipid analog during the first seconds of endocytosis in living cells.Biophys. J.72,37-50.
Choudhury, A., Dominguez, M., Puri, V., Sharma, D.K., Narita, K., Wheatley, C.W., Marks, D.L., and Pagano, R.E. (2002). Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells.J. Clin. Invest.109,1541-1550.
Christian, A.E., Haynes, M.P., Phillips, M.C., and Rothblat, G.H. (1997). Use of cyclodextrins for manipulating cellular cholesterol content.J. Lipid Res.38,2264-2272.
del Pozo, M.A., Alderson, N.B., Klosses, W.B., Chiang, H.H., Anderson, R.G.W., and Schwartz, M.A. (2004). Integrins regulate Rac targeting by internalization of membrane domains.Science303,839-842.
Dreja, K., Voldstedlund, M., Vinten, J., Tranum-Jensen, J., Hellstrand, P., and Sward, K. (2002). Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler.Thromb. Vasc. Biol.22,1267-1272.
Duchemin, A.M., Ren, Q., Mo, L., Neff, N.H., and Hadjiconstantinou, M. (2002). GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain.J. Neurochem.81,696-707.
Duncan, M.J., Shin, J.S., and Abraham, S.N. (2002). Microbial entry through caveolae: variations on a theme.Cell. Microbiol.4,783-791.
Edidin, M. (2003). The state of lipids rafts: From model membranes to cells.Annu. Rev. Biophys. Biomolec. Struct.32,257-283.
Fielding, C.J., and Fielding, P.E. (2001). Caveolae and intracellular trafficking of cholesterol.Adv. Drug Deliv. Rev.49,251-264.
Gumbleton, M., Hollins, A.J., Omidi, Y., Campbell, L., and Taylor, G. (2003). Targeting caveolae for vesicular drug transport.J. Control Release87,139-151.
Hailstones, D., Sleer, L.S., Parton, R.G., and Stanley, K.K. (1998). Regulation of caveolin and caveolae by cholesterol in MDCK cells.J. Lipid Res.39,369-379.
Le, P.U., Guay, G., Altschuler, Y., and Nabi, I.R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum.J. Biol. Chem.277,3371-3379.
Le, P.U., and Nabi, I.R. (2003). Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum.J. Cell Sci.116,1059-1071.
Lencer, W.I., Hirst, T.R., and Holmes, R.K. (1999). Membrane traffic and the cellular uptake of cholera toxin.Biochim. Biophys. Acta1450,177-190.
Li, R., Liu, Y., and Ladisch, S. (2001). Enhancement of epidermal growth factor signaling and activation of SRC kinase by gangliosides.J. Biol. Chem.276,42782-42792.
Marjomaki, V., Pietianinen, V., Matilainen, H., Upla, P., Ivaska, J., Nissinen, L., Reunanen, H., Huttunen, P., Hyypia, T., and Heino, J. (2002). Internalization of echovirus 1 in caveolae.J. Virol.76,1856-1865.
Martin, O.C., Comly, M.E., Blanchette-Mackie, E.J., Pentchev, P.G., and Pagano, R.E. (1993). Cholesterol deprivation affects the fluorescence properties of a ceramide analog at the Golgi apparatus of living cells.Proc. Natl. Acad. Sci. USA90,2661-2665.
Martin, O.C., and Pagano, R.E. (1994). Internalization and sorting of a fluorescent analog of glucosylceramide to the Golgi apparatus of human skin fibroblasts: utilization of endocytic and nonendocytic transport mechanisms.J. Cell Biol.125,769-781.
Mineo, C., and Anderson, R.G. (2001). Potocytosis. Robert Feulgen Lecture. Histochem.Cell Biol.116,109-118.
Mineo, C., Gill, G.N., and Anderson, R.G. (1999). Regulated migration of epidermal growth factor receptor from caveolae.J. Biol. Chem.274,30636-30643.
Minshall, R.D., Tiruppathi, C., Vogel, S.M., Niles, W.D., Gilchrist, A., Hamm, H.E., and Malik, A.B. (2000). Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway.J. Cell Biol.150,1057-1070.
Neufeld, E.B.et al.(1999). The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo.J. Biol. Chem.274,9627-9635.
Norkin, L.C. (2001). Caveolae in the uptake and targeting of infectious agents and secreted toxins.Adv. Drug Deliv. Rev.49,301-315.
Orlandi, P.A., and Fishman, P.H. (1998). Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains.J. Cell Biol.141,905-915.
Parton, R.G. (2003). Caveolae—from ultrastructure to molecular mechanisms.Nat. Rev. Mol. Cell. Biol.4,162-167.
Parton, R.G., Molero, J.C., Floetenmeyer, M., Green, K.M., and James, D.E. (2002). Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes.J. Biol. Chem.277,46769-46778.
Pelkmans, L., Kartenbeck, J., and Helenius, A. (2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER.Nat. Cell Biol.3,473-483.
Pelkmans, L., Püntener, D., and Helenius, A. (2002). Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae.Science296,535-539.
Prior, I.A., Harding, A., Yan, J., Sluimer, J., Parton, R.G., and Hancock, J.F. (2001). GTP-dependent segregation of H-ras from lipid rafts is required for biological activity.Nat. Cell Biol.3,368-375.
Puri, V., Jefferson, J.R., Singh, R.D., Wheatley, C.L., Marks, D.L., and Pagano, R.E. (2003). Sphingolipid storage induces accumulation of intracellular cholesterol by stimulating SREBP-1 cleavage.J. Biol. Chem.278,20961-20970.
Puri, V., Watanabe, R., Dominguez, M., Sun, X., Wheatley, C.L., Marks, D.L., and Pagano, R.E. (1999). Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid storage diseases.Nat. Cell Biol.1,386-388.
Puri, V., Watanabe, R., Singh, R.D., Dominguez, M., Brown, J.C., Wheatley, C.L., Marks, D.L., and Pagano, R.E. (2001). Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways.J. Cell Biol.154,535-547.
Richterova, Z., Liebl, D., Horak, M., Palkova, Z., Stokrova, J., Hozak, P., Korb, J., and Forstova, J. (2001). Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei.J. Virol.75,10880-10891.
Sabharanjak, S., Sharma, P., Parton, R.G., and Mayor, S. (2002). GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway.Develop. Cell2,411-423.
Schnitzer, J.E., Oh, P., Pinney, E., and Allard, J. (1994). Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules.J. Cell Biol.127,1217-1232.
Sharma, D.K., Choudhury, A., Singh, R.D., Wheatley, C.L., Marks, D.L., and Pagano, R.E. (2003). Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling.J. Biol. Chem.278,7564-7572.
Shin, J.S., Gao, Z., and Abraham, N. (2000). Involvement of cellular caveolae in bacterial entry into mast cells.Science289,785-788.
Shubert, W., Frank, P.G., Razani, B., Park, D.S., Chow, C.W., and Lisanti, M.P. (2001). Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo.J. Biol. Chem.276,48619-48622.
Smart, E., Graf, G., McNiven, M., Sessa, W., Elgelman, J., Scherer, P., Okamoto, T., and Lisanti, M. (1999). Caveolins, liquid-ordered domains, and signal transduction.Mol. Cell. Biol.19,7289-7304.
Smart, E.J., Ying, Y.S., and Anderson, R.G. (1995). Hormonal regulation of caveolae internalization.J. Cell Biol.131,929-938.
Torgersen, M.L., Skretting, G., van Deurs, B., and Sandvig, K. (2001). Internalization of cholera toxin by different endocytic mechanisms.J. Cell Sci.114,3737-3742.
Wang, X.Q., Sun, P., and Paller, A.S. (2002). Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor.J. Biol. Chem.277,47028-47034.