Lựa chọn phôi nang đủ tiêu chuẩn cho việc chuyển giao bằng cách kết hợp giám sát thời gian thực và xét nghiệm CGH mảng cho bệnh nhân trải qua sàng lọc di truyền trước cấy ghép: một nghiên cứu triển vọng với các noãn chị em

BMC Medical Genomics - Tập 7 - Trang 1-13 - 2014
Zhihong Yang1,2,3,4,5, John Zhang2, Shala A Salem1, Xiaohong Liu3, Yanping Kuang4, Rifaat D Salem1, Jiaen Liu3
1ART and REI Division, Pacific Reproductive Center, Torrance, USA
2ART Division, New Hope Fertility Center, New York, USA
3IVF and REI Division, Jia En De Yun Hospital, Beijing, People’s Republic of China
4ART Department, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
5ZytoGen Global Genetics Institute, Timonium, USA

Tóm tắt

Những tiến bộ gần đây trong việc giám sát thời gian thực trong điều trị IVF đã cung cấp các dấu hiệu morhokinetic mới cho khả năng phát triển của phôi. Tuy nhiên, còn rất ít thông tin về mối quan hệ giữa các tham số morhokinetic, thành phần nhiễm sắc thể và khả năng cấy ghép. Do đó, nghiên cứu này nhằm điều tra tác động của việc lựa chọn các phôi nang đủ điều kiện để chuyển giao bằng cách kết hợp giám sát thời gian thực và kiểm tra CGH mảng đến kết quả thai kỳ và cấy ghép cho bệnh nhân trải qua sàng lọc di truyền trước cấy ghép (PGS). Tổng cộng có 1163 noãn kỳ II (MII) đã được thu thập từ 138 bệnh nhân PGS với độ tuổi trung bình là 36,6 ± 2,4 năm. Các noãn MII chị em này sau đó đã được ngẫu nhiên chia thành hai nhóm sau khi ICSI: 1) Nhóm A, noãn (n = 582) được nuôi cấy trong hệ thống giám sát thời gian thực và 2) Nhóm B, noãn (n = 581) được nuôi cấy trong lò ấp thông thường. Đối với cả hai nhóm, khuếch đại toàn bộ gen và xét nghiệm CGH mảng được thực hiện sau khi sinh thiết tropectoderm vào ngày thứ 5. Một đến hai phôi nang euploid trong các tham số morhokinetic dự đoán nhất (Nhóm A) hoặc với loại hình thái tốt nhất có sẵn (Nhóm B) đã được chọn để chuyển giao cho từng bệnh nhân vào ngày thứ 6. Tỷ lệ thai kỳ liên tục và tỷ lệ cấy ghép đã được so sánh giữa hai nhóm. Có sự khác biệt đáng kể về tỷ lệ thai kỳ lâm sàng giữa Nhóm A và Nhóm B (71,1% so với 45,9%, tương ứng, p = 0,037). Tỷ lệ cấy ghép được quan sát trên mỗi lần chuyển phôi cũng tăng đáng kể ở Nhóm A so với Nhóm B (66,2% so với 42,4%, tương ứng, p = 0,011). Hơn nữa, một sự gia tăng đáng kể trong tỷ lệ thai kỳ liên tục cũng được quan sát thấy ở Nhóm A so với Nhóm B (68,9% so với 40,5%, tương ứng, p = 0,019). Tuy nhiên, không có sự khác biệt đáng kể về tỷ lệ sảy thai giữa hệ thống giám sát thời gian thực và lò ấp thông thường (3,1% so với 11,8%, tương ứng, p = 0,273). Nghiên cứu này là nghiên cứu triển vọng đầu tiên sử dụng các noãn chị em để đánh giá hiệu quả của việc lựa chọn phôi nang đủ tiêu chuẩn cho việc chuyển giao bằng cách kết hợp giám sát thời gian thực và kiểm tra CGH mảng cho bệnh nhân PGS. Dữ liệu của chúng tôi rõ ràng cho thấy rằng sự kết hợp của hai công nghệ tiên tiến này để chọn ra các phôi nang đủ tiêu chuẩn cho việc chuyển giao dẫn đến tỷ lệ cấy ghép và tỷ lệ thai kỳ liên tục được cải thiện cho bệnh nhân PGS.

Từ khóa

#IVF #phôi nang #giám sát thời gian thực #xét nghiệm CGH mảng #sàng lọc di truyền trước cấy ghép #noãn chị em

Tài liệu tham khảo

Edwards RG, Purdy JM, Steptoe PC, Walters DE: The growth of human preimplantation embryos in vitro. Am J Obstet Gynecol. 1981, 141: 408-416. Racowsky C, Vernon M, Mayer J, Ball GD, Behr B, Pomeroy KO, Wininger D, Gibbons W, Conaghan J, Stern JE: Standardization of grading embryo morphology. J Assist Reprod Genet. 2010, 27: 437-439. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology: The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011, 26: 1270-1283. Cummins JM, Breen TM, Harrison KL, Shaw JM, Wilson LM, Hennessey JF: A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J In Vitro Fert Embryo Transf. 1986, 3: 284-295. Giorgetti C, Terriou P, Auquier P, Hans E, Spach JL, Salzmann J, Roulier R: Embryo score to predict implantation after in-vitro fertilization: based on 957 single embryo transfers. Hum Reprod. 1995, 10: 2427-2431. Racowsky C, Ohno-Machado L, Kim J, Biggers JD: Is there an advantage in scoring early embryos on more than one day?. Hum Reprod. 2009, 24: 2104-2113. Racowsky C, Combelles CMH, Nureddin A, Pan Y, Finn A, Miles L, Gale S, O'Leary T, Jackson KV: Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003, 6: 323-331. Scott L, Alvero R, Leondires M, Miller B: The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod. 2000, 15: 2394-2403. Chen C, Kattera S: Comparison of pronuclear zygote morphology and early cleavage status of zygotes as additional criteria in the selection of day 3 embryos: a randomized study. Fertil Steril. 2006, 85: 347-352. Gardner DK, Schoolcraft WB: Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol. 1999, 11: 307-311. Alfarawati S, Fragouli E, Colls P, Stevens J, Gutierrez-Mateo C, Schoolcraft WB, Katz-Jaffe MG, Wells D: The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011, 95: 520-524. Yang Z, Liu J, Collins GS, Salem SA, Liu X, Lyle SS, Peck AC, Sills ES, Salem RD: Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 2012, 5: 24. Liu J, Sills ES, Yang Z, Salem SA, Rahil T, Collins GS, Liu X, Salem RD: Array comparative genomic hybridization screening in IVF significantly reduces number of embryos available for cryopreservation. Clin Exp Reprod Med. 2012, 39: 52-57. Yang Z, Salem SA, Liu X, Kuang Y, Salem RD, Liu J: Selection of euploid blastocysts for cryopreservation with array comparative genomic hybridization (aCGH) results in increased implantation rates in subsequent frozen and thawed embryo transfer cycles. Mol Cytogenet. 2013, 6: 32. Zhang JQ, Li XL, Peng Y, Guo X, Heng BC, Tong GQ: Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod Biomed Online. 2010, 20: 510-515. Calzi F, Papaleo E, Rabellotti E, Ottolina J, Vailati S, Vigano P, Candiani M: Exposure of embryos to oxygen at low concentration in a cleavage stage transfer program: reproductive outcomes in a time-series analysis. Clin Lab. 2012, 58: 997-1003. Swain JE: Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online. 2010, 21: 6-16. Gomes Sobrinho DB, Oliveira JBA, Petersen CG, Mauri AL, Silva LFI, Massaro FC, Baruffi RLR, Cavagna M, Franco JG: IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011, 9: 143. Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J: Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril. 1990, 54: 102-108. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Hickman CFL: Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod Biomed Online. 2013, 26: 477-485. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S: Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online. 2013, 27: 140-146. Payne D, Flaherty SP, Barry MF, Matthews CD: Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod. 1997, 12: 532-541. Mio Y, Maeda K: Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol. 2008, 199: 1-5. Lemmen JG, Agerholm I, Ziebe S: Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008, 17: 385-391. Arav A, Aroyo A, Yavin S, Roth Z: Prediction of embryonic developmental competence by time-lapse observation and 'shortest-half' analysis. Reprod Biomed Online. 2008, 17: 669-675. Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J: The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011, 26: 2658-2671. Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escriba M-J, Bellver J, Meseguer M: Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012, 98: 1458-1463. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Reijo Pera RA: Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010, 28: 1115-1121. Pribenszky C, Matyas S, Kovacs P, Losonczi E, Zadori J, Vajta G: Pregnancy achieved by transfer of a single blastocyst selected by time-lapse monitoring. Reprod Biomed Online. 2010, 21: 533-536. Ciray HN, Aksoy T, Goktas C, Ozturk B, Bahceci M: Time-lapse evaluation of human embryo development in single versus sequential culture media–a sibling oocyte study. J Assist Reprod Genet. 2012, 29: 891-900. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ: Human embryonic development after blastomere removal: a time-lapse analysis. Hum Reprod. 2012, 27: 97-105. Cruz M, Gadea B, Garrido N, Pedersen KS, Martinez M, Perez-Cano I, Munoz M, Meseguer M: Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet. 2011, 28: 569-573. Kirkegaard K, Hindkjaer JJ, Grondahl ML, Kesmodel US, Ingerslev HJ: A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. J Assist Reprod Genet. 2012, 29: 565-572. Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A: Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012, 98: 1481-1489. Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, Baker VL, Adamson G, Abusief M, Gvakharia M, Loewke KE, Shen S: Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013, 100: 412-419. Kirkegaard K, Kesmodel US, Hindkjær JJ, Ingerslev HJ: Time-lapse as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohory study. Hum Reprod. 2013, 28: 2643-2651. Hodes-Wertz B, Grifo J, Ghadir S, Kaplan B, Laskin CA, Glassner M, Munne S: Idiopathic recurrent miscarriage is caused mostly by aneuploid embryos. Fertil Steril. 2012, 98: 675-680. Wilton L: Preimplantation genetic diagnosis and chromosome analysis of blastomeres using comparative genomic hybridization. Hum Reprod Update. 2005, 11: 33-41. Munne S, Alikani M, Tomkin G, Grifo J, Cohen J: Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertil Steril. 1995, 64: 382-391. Hassold T, Hunt P: Maternal age and chromosomally abnormal pregnancies: what we know and what we wish we knew. Curr Opin Pediatr. 2009, 21: 703-708. Kuliev A, Cieslak J, Verlinsky Y: Frequency and distribution of chromosome abnormalities in human oocytes. Cytogenet Genome Res. 2005, 111: 193-198. Mantzouratou A, Delhanty JDA: Aneuploidy in the human cleavage stage embryo. Cytogenet Genome Res. 2011, 133: 141-148. Fragouli E, Wells D: Aneuploidy in the human blastocyst. Cytogenet Genome Res. 2011, 133: 149-159. Rubio C, Simon C, Vidal F, Rodrigo L, Pehlivan T, Remohi J, Pellicer A: Chromosomal abnormalities and embryo development in recurrent miscarriage couples. Hum Reprod. 2003, 18: 182-188. Voullaire L, Wilton L, McBain J, Callaghan T, Williamson R: Chromosome abnormalities identified by comparative genomic hybridization in embryos from women with repeated implantation failure. Mol Hum Reprod. 2002, 8: 1035-1041. Munne S, Sandalinas M, Magli C, Gianaroli L, Cohen J, Warburton D: Increased rate of aneuploid embryos in young women with previous aneuploid conceptions. Prenat Diagn. 2004, 24: 638-643. Handyside AH, Kontogianni EH, Hardy K, Winston RM: Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990, 344: 768-770. Handyside AH, Lesko JG, Tarin JJ, Winston RM, Hughes MR: Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis. N Engl J Med. 1992, 327: 905-909. Liu J, Lissens W, Devroey P, Liebaers I, Van Steirteghem AC: Efficiency of polymerase chain reaction assay for cystic fibrosis in single human blastomeres according to the presence or absence of nuclei. Fertil Steril. 1993, 59: 815-819. Delhanty JD, Griffin DK, Handyside AH, Harper J, Atkinson GH, Pieters MH, Winston RM: Detection of aneuploidy and chromosomal mosaicism in human embryos during preimplantation sex determination by fluorescent in situ hybridisation, (FISH). Hum Mol Genet. 1993, 2: 1183-1185. Munne S, Lee A, Rosenwaks Z, Grifo J, Cohen J: Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod. 1993, 8: 2185-2191. Harper JC, Delhanty JD: Detection of chromosomal abnormalities in human preimplantation embryos using FISH. J Assist Reprod Genet. 1996, 13: 137-139. Gianaroli L, Magli MC, Ferraretti AP, Fiorentino A, Garrisi J, Munne S: Preimplantation genetic diagnosis increases the implantation rate in human in vitro fertilization by avoiding the transfer of chromosomally abnormal embryos. Fertil Steril. 1997, 68: 1128-1131. Staessen C, Verpoest W, Donoso P, Haentjens P, Van der Elst J, Liebaers I, Devroey P: Preimplantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer. Hum Reprod. 2008, 23: 2818-2825. Hardarson T, Hanson C, Lundin K, Hillensjo T, Nilsson L, Stevic J, Reismer E, Borg K, Wikland M, Bergh C: Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Reprod. 2008, 23: 2806-2812. Schoolcraft WB, Katz-Jaffe MG, Stevens J, Rawlins M, Munne S: Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial. Fertil Steril. 2009, 92: 157-162. Debrock S, Melotte C, Spiessens C, Peeraer K, Vanneste E, Meeuwis L, Meuleman C, Frijns J-P, Vermeesch JR, D'Hooghe TM: Preimplantation genetic screening for aneuploidy of embryos after in vitro fertilization in women aged at least 35 years: a prospective randomized trial. Fertil Steril. 2010, 93: 364-373. Wells D, Delhanty JD: Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod. 2000, 6: 1055-1062. Voullaire L, Wilton L, Slater H, Williamson R: Detection of aneuploidy in single cells using comparative genomic hybridization. Prenat Diagn. 1999, 19: 846-851. Fragouli E, Lenzi M, Ross R, Katz-Jaffe M, Schoolcraft WB, Wells D: Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod. 2008, 23: 2596-2608. Sher G, Keskintepe L, Keskintepe M, Maassarani G, Tortoriello D, Brody S: Genetic analysis of human embryos by metaphase comparative genomic hybridization (mCGH) improves efficiency of IVF by increasing embryo implantation rate and reducing multiple pregnancies and spontaneous miscarriages. Fertil Steril. 2009, 92: 1886-1894. Schoolcraft WB, Fragouli E, Stevens J, Munne S, Katz-Jaffe MG, Wells D: Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010, 94: 1700-1706. Gutierrez-Mateo C, Colls P, Sanchez-Garcia J, Escudero T, Prates R, Ketterson K, Wells D, Munne S: Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril. 2011, 95: 953-958. Fishel S, Gordon A, Lynch C, Dowell K, Ndukwe G, Kelada E, Thornton S, Jenner L, Cater E, Brown A, Garcia-Benardo J: Live birth after polar body array comparative genomic hybridization prediction of embryo ploidy-the future of IVF?. Fertil Steril. 2010, 93: 1006-e7-e10 Alfarawati S, Fragouli E, Colls P, Wells D: First births after preimplantation genetic diagnosis of structural chromosome abnormalities using comparative genomic hybridization and microarray analysis. Hum Reprod. 2011, 26: 1560-1574. Fiorentino F, Spizzichino L, Bono S, Biricik A, Kokkali G, Rienzi L, Ubaldi FM, Iammarrone E, Gordon A, Pantos K: PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization. Hum Reprod. 2011, 26: 1925-1935. Gabriel AS, Thornhill AR, Ottolini CS, Gordon A, Brown APC, Taylor J, Bennett K, Handyside A, Griffin DK: Array comparative genomic hybridisation on first polar bodies suggests that non-disjunction is not the predominant mechanism leading to aneuploidy in humans. J Med Genet. 2011, 48: 433-437. Geraedts J, Montag M, Magli MC, Repping S, Handyside A, Staessen C, Harper J, Schmutzler A, Collins J, Goossens V, van der Ven H, Vesela K, Gianaroli L: Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results. Hum Reprod. 2011, 26: 3173-3180. Fragouli E, Alfarawati S, Daphnis DD, Goodall NN, Mania A, Griffiths T, Gordon A, Wells D: Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011, 26: 480-490. Liu J, Wang W, Sun X, Liu L, Jin H, Li M, Witz C, Williams D, Griffith J, Skorupski J, Haddad G, Gill J: DNA microarray reveals that high proportions of human blastocysts from women of advanced maternal age are aneuploid and mosaic. Biol Reprod. 2012, 87: 148-148. Capalbo A, Bono S, Spizzichino L, Biricik A, Baldi M, Colamaria S, Ubaldi FM, Rienzi L, Fiorentino F: Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development. Hum Reprod. 2013, 28: 509-518. Handyside AH: PGD and aneuploidy screening for 24 chromosomes by genome-wide SNP analysis: seeing the wood and the trees. Reprod Biomed Online. 2011, 23: 686-691. Treff NR, Su J, Tao X, Levy B, Scott RT: Accurate single cell 24 chromosome aneuploidy screening using whole genome amplification and single nucleotide polymorphism microarrays. Fertil Steril. 2010, 94: 2017-2021. Northrop LE, Treff NR, Levy B, Scott RT: SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010, 16: 590-600. Johnson DS, Gemelos G, Baner J, Ryan A, Cinnioglu C, Banjevic M, Ross R, Alper M, Barrett B, Frederick J, Potter D, Behr B, Rabinowitz M: Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod. 2010, 25: 1066-1075. Lathi RB, Massie JAM, Gilani M, Milki AA, Westphal LM, Baker VL, Behr B: Outcomes of trophectoderm biopsy on cryopreserved blastocysts: a case series. Reprod Biomed Online. 2012, 25: 504-507. Scott RT, Upham KM, Forman EJ, Hong KH, Scott KL, Talor D, Tao X, Treff NR: Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. in press Scott RT, Ferry K, Su J, Tao X, Scott K, Treff NR: Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012, 97: 870-875. Treff NR, Tao X, Ferry KM, Su J, Taylor D, Scott RT: Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012, 97: 819-824. Forman EJ, Tao X, Ferry KM, Taylor D, Treff NR, Scott RT: Single embryo transfer with comprehensive chromosome screening results in improved ongoing pregnancy rates and decreased miscarriage rates. Hum Reprod. 2012, 27: 1217-1222. Catt JW, Henman M: Toxic effects of oxygen on human embryo development. Hum Reprod. 2000, 15 (Suppl 2): 199-206. Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, Barnett BD, Madden JD: A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009, 24: 300-307. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS: Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod. 1998, 13: 998-1002. Kovacic B, Vlaisavljevic V: Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online. 2008, 17: 229-236. Capalbo A, Wright G, Elliot T, Ubaldi FM, Rienzi L, Nagy ZP: FISH reananlysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage. Hum Reprod. 2013, 28: 2298-2307. Niemitz EL, Feinberg AP: Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004, 74: 599-609. Horsthemke B, Ludwig M: Assisted reproduction: the epigenetic perspective. Hum Reprod Update. 2005, 11: 473-482. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1755-8794/7/38/prepub