Selection in spatial stochastic models of cancer: Migration as a key modulator of fitness
Tóm tắt
We study the selection dynamics in a heterogeneous spatial colony of cells. We use two spatial generalizations of the Moran process, which include cell divisions, death and migration. In the first model, migration is included explicitly as movement to a proximal location. In the second, migration is implicit, through the varied ability of cell types to place their offspring a distance away, in response to another cell's death. In both models, we find that migration has a direct positive impact on the ability of a single mutant cell to invade a pre-existing colony. Thus, a decrease in the growth potential can be compensated by an increase in cell migration. We further find that the neutral ridges (the set of all types with the invasion probability equal to that of the host cells) remain invariant under the increase of system size (for large system sizes), thus making the invasion probability a universal characteristic of the cells selection status. We find that repeated instances of large scale cell-death, such as might arise during therapeutic intervention or host response, strongly select for the migratory phenotype. These models can help explain the many examples in the biological literature, where genes involved in cell's migratory and invasive machinery are also associated with increased cellular fitness, even though there is no known direct effect of these genes on the cellular reproduction. The models can also help to explain how chemotherapy may provide a selection mechanism for highly invasive phenotypes. This article was reviewed by Marek Kimmel and Glenn Webb.
Tài liệu tham khảo
Hanahan D, Weinberg R: The hallmarks of cancer. CELL. 2000, 100 (1): 57-70. 10.1016/S0092-8674(00)81683-9.
Nowell P: The clonal evolution of tumor cell populations. Science. 1976, 194: 23-28. 10.1126/science.959840.
Breivik J, Gaudernack G: Carcinogenesis and natural selection: a new perspective to the genetics and epigenetics of colorectal cancer. Adv Cancer Res. 1999, 76: 187-212. full_text.
Gatenby R, Maini P: Mathematical oncology: cancer summed up. Nature. 2003, 421: 321-10.1038/421321a.
Nowak M, Sigmund K: Evolutionary dynamics of biological games. Science. 2004, 303: 793-799. 10.1126/science.1093411.
Wodarz D, Komarova N: Computational biology of cancer: lecture notes and mathematical modeling. 2005, World Scientific
Vineis P, Berwick M: The population dynamics of cancer: a Darwinian perspective. Int J Epidemiol. 2006, 35: 1151-1159. 10.1093/ije/dyl185.
Merlo L, Pepper J, Reid B, Maley C: Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006, 6: 924-935. 10.1038/nrc2013.
Rinker-Schaeffer CW, O'Keefe JP, Welch DR, Theodorescu D: Metastasis suppressor proteins: Discovery, molecular mechanisms, and clinical application. Clinical cancer research. 2006, 12 (13): 3882-3889. 10.1158/1078-0432.CCR-06-1014.
Wright S: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the Sixth International Congress on Genetics. 1932, 355-366.
Smith JM: Evolution and the Theory of Games. 1982, Cambridge University Press. Cambridge
Vincent TL, Brown JS: Evolutionary game theory, natural selection, and Darwinian dynamics. 2005, Cambridge University Press. NY
Moran P: The Statistical Processes of Evolutionary Theory. 1962, Oxford: Clarendon
Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih IM, Vogelstein B, Lengauer C: The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA. 2002, 99 (25): 16226-16231. 10.1073/pnas.202617399.
Komarova NL, Sengupta A, Nowak MA: Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J Theor Biol. 2003, 223 (4): 433-450. 10.1016/S0022-5193(03)00120-6.
Nowak MA, Michor F, Komarova NL, Iwasa Y: Evolutionary dynamics of tumor suppressor gene inactivation. Proc Natl Acad Sci USA. 2004, 101 (29): 10635-10638. 10.1073/pnas.0400747101.
Michor F, Iwasa Y, Rajagopalan H, Lengauer C, Nowak MA: Linear model of colon cancer initiation. Cell Cycle. 2004, 3 (3): 358-362.
Iwasa Y, Michor F, Nowak MA: Stochastic tunnels in evolutionary dynamics. Genetics. 2004, 166 (3): 1571-1579. 10.1534/genetics.166.3.1571.
Komarova NL: Spatial stochastic models for cancer initiation and progression. Bull Math Biol. 2006, 68 (7): 1573-1599. 10.1007/s11538-005-9046-8.
Komarova N: Loss- and gain-of-function mutations in cancer: mass-action, spatial and hierarchical models. Jour Stat Phys. 2007, 128: 413-446. 10.1007/s10955-006-9238-0.
Deutsch A, Dormann S: Cellular automaton modeling of biological pattern formation. 2005, Birkhauser. Boston
Byrne H, Alarcón T, Owen M, Webb S, Maini P: Modeling Aspects of Cancer Dynamics: A Review. Phi Trans R Soc A. 2006, 364: 1563-1578. 10.1098/rsta.2006.1786.
Fasano A, Bertuzzi A, Gandolfi A: Complex systems in biomedicine. Milan: Springer 2006 chap. Mathematical modelling of tumour growth and treatment, 71-108.
Galle J, Aust G, Schaller G, Beyer T, Drasdo D: Individual cell-based models of the spatial temporal organization of multicellular systems-Achievements and limitations. Cytometry. 2006, 69A: 704-710. 10.1002/cyto.a.20287.
Drasdo D, Höhme S: On the role of physics in the growth and pattern of multicellular systems: What we learn from individual-cell based models?. J Stat Phys. 2007, 128: 287-345. 10.1007/s10955-007-9289-x.
Anderson A, Chaplain M, Rejniak K, Fozard J: Single-cell based models in biology and medicine. Math Med Biol. 2008, 25: 185-186. 10.1093/imammb/dqn008.
Deisboeck T, Zhang L, Yoon J, Costa J: In silico cancer modeling: is it ready for prime time?. 2008, 6: 34-42.
Anderson A, Quaranta V: Integrative mathematical oncology. Nature Reviews Cancer. 2008, 8: 227-244. 10.1038/nrc2329.
Quaranta V, Rejniak K, Gerlee P, Anderson A: Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models. Sem Cancer Biol. 2008, 18: 338-348. 10.1016/j.semcancer.2008.03.018.
Gould S: Tempo and mode in the macroevolutionary reconstruction of Darwinism. Proc Nat Acad Sci USA. 1994, 91: 6764-6771. 10.1073/pnas.91.15.6764.
Anderson RM, May RM: Coevolution of hosts and parasites. Parasitology. 1982, 85 (Pt 2): 411-426. 10.1017/S0031182000055360.
Nowak MA, May RM: Superinfection and the evolution of parasite virulence. Proc Biol Sci. 1994, 255 (1342): 81-89. 10.1098/rspb.1994.0012.
Levin BR: The evolution and maintenance of virulence in microparasites. Emerg Infect Dis. 1996, 2 (2): 93-102. 10.3201/eid0202.960203.
Ebert D, Herre EA: The evolution of parasitic diseases. Parasitol Today. 1996, 12 (3): 96-101. 10.1016/0169-4758(96)80668-5.
Frank SA: Models of parasite virulence. Q Rev Biol. 1996, 71: 37-78. 10.1086/419267.
Ebert D, Mangin KL: The influence of host demography on the evolution of virulence of a microsporidian gut parasite. Evolution. 1997, 51: 1828-1837. 10.2307/2411005.
Sasaki A, Boots M: Parasite evolution and extinctions. Ecology Letters. 2003, 6 (3): 176-10.1046/j.1461-0248.2003.00426.x.
Boots M, Hudson PJ, Sasaki A: Large shifts in pathogen virulence relate to host population structure. Science. 2004, 303 (5659): 842-844. 10.1126/science.1088542.
Streuli C, Akhtar N: Signal co-operation between integrins and other receptor systems. Biochem J. 2009, 418: 491-506. 10.1042/BJ20081948.
Vogel V, Sheetz M: Cell fate regulation by coupling mechanical cycles to biochemical signalling pathways. Biochem J. 2009, 418: 491-506. 10.1042/BJ20081948.
Bustelo X, Sauzeau V, Berenjeno I: GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays. 2007, 29: 356-370. 10.1002/bies.20558.
Burnton V, Frame M: Src and focal adhesion kinase as therapeutic targets in cancer. Curr Opin Pharmacol. 2008, 8: 427-432. 10.1016/j.coph.2008.06.012.
Boutros T, Chevet E, Metrakos P: Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death and cancer. Pharmacol Rev. 2008, 60: 261-310. 10.1124/pr.107.00106.
Yuan T, Cantley L: PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008, 27: 5497-5510. 10.1038/onc.2008.245.
Clark E, Golub T, Lander E, Hynes R: Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000, 406: 532-535. 10.1038/35020106.
Stoletov K, Motel V, Lester R, Gonias S, Klemke R: High-resolution imaging of the dynamic tumor cell-vascular interface in transparent zebrafish. Nature. 2007, 104: 17406-17411.
Larkins TL, Nowell M, Singh S, Sanford GL: Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC CANCER. 2006, 6: 10.1186/1471-2407-6-181.
Lim S, Mikolon D, Stupack D, Schlaepfer D: FERM control of FAK function: Implications for cancer therapy. Cell Cycle. 2008, 7: 2306-2314.
Wang SE, Hinow P, Bryce N, Weaver AM, Estrada L, Arteaga CL, Webb GF: A mathematical model quantifies proliferation and motility effects of TGF- on cancer cells. Computational and mathematical methods in medicine. 2009, 10 (1): 71-83. 10.1080/17486700802171993.
Marciniak-Czochra A, Kimmel M: Modelling of early lung cancer progression: Influence of growth factor production and cooperation between partially transformed cells. Mathmatical models and methods in applied sciences. 2007, 17 (1, Suppl S): 1693-1719. 10.1142/S0218202507002443.