Selection and validation of a set of reliable reference genes for quantitative RT-PCR studies in the brain of the Cephalopod Mollusc Octopus vulgaris

M Sirakov1, Ilaria Zarrella1, Marco Borra2, Francesca Rizzo3, Elio Biffali2, Maria Ina Arnone3, Graziano Fiorito4
1Laboratorio di Neurobiologia, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Napoli, Italy
2Molecular Biology Core Service, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
3Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
4Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy

Tóm tắt

Abstract Background Quantitative real-time polymerase chain reaction (RT-qPCR) is valuable for studying the molecular events underlying physiological and behavioral phenomena. Normalization of real-time PCR data is critical for a reliable mRNA quantification. Here we identify reference genes to be utilized in RT-qPCR experiments to normalize and monitor the expression of target genes in the brain of the cephalopod mollusc Octopus vulgaris, an invertebrate. Such an approach is novel for this taxon and of advantage in future experiments given the complexity of the behavioral repertoire of this species when compared with its relatively simple neural organization. Results We chose 16S, and 18S rRNA, actB, EEF1A, tubA and ubi as candidate reference genes (housekeeping genes, HKG). The expression of 16S and 18S was highly variable and did not meet the requirements of candidate HKG. The expression of the other genes was almost stable and uniform among samples. We analyzed the expression of HKG into two different set of animals using tissues taken from the central nervous system (brain parts) and mantle (here considered as control tissue) by BestKeeper, geNorm and NormFinder. We found that HKG expressions differed considerably with respect to brain area and octopus samples in an HKG-specific manner. However, when the mantle is treated as control tissue and the entire central nervous system is considered, NormFinder revealed tubA and ubi as the most suitable HKG pair. These two genes were utilized to evaluate the relative expression of the genes FoxP, creb, dat and TH in O. vulgaris. Conclusion We analyzed the expression profiles of some genes here identified for O. vulgaris by applying RT-qPCR analysis for the first time in cephalopods. We validated candidate reference genes and found the expression of ubi and tubA to be the most appropriate to evaluate the expression of target genes in the brain of different octopuses. Our results also underline the importance of choosing a proper normalization strategy when analyzing gene expression by qPCR taking into appropriate account the experimental setting and variability of the sample of animals (and tissues), thus providing a set of HGK which expression appears to be unaffected by the experimental factor(s).

Từ khóa


Tài liệu tham khảo

Huggett J, Dheda K, Bustin S, Zumla A: Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005, 6: 279-284. 10.1038/sj.gene.6364190

Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A: Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004, 313: 856-862. 10.1016/j.bbrc.2003.11.177

Skern R, Frost P, Nilsen F: Relative transcript quantification by quantitative PCR: roughly right or precisely wrong?. BMC Mol Biol. 2005 Apr 26;6(1):10. 2005, 6 (1): 10- 10.1186/1471-2199-6-10

Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E: Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999, 75: 291-295. 10.1016/S0168-1656(99)00163-7

Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A: Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques. 2004, 37: 112-114.

Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A: The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem. 2005, 344: 141-143. 10.1016/j.ab.2005.05.022

Jain M, Nijhawan A, Tyagi AK, Khurana JP: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun. 2006, 345: 646-651. 10.1016/j.bbrc.2006.04.140

Liu DW, Chen ST, Liu HP: Choice of endogenous control for gene expression in nonsmall cell lung cancer. Eur Respir J. 2005, 26: 1002-1008. 10.1183/09031936.05.00050205

Mamo S, Gal AB, Bodo S, Dinnyes A: Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol. 2007, 7: 14- 10.1186/1471-213X-7-14

Schmittgen TD, Zakrajsek BA: Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods. 2000, 46: 69-81. 10.1016/S0165-022X(00)00129-9

Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30 (9 ): e36- 10.1093/nar/30.9.e36

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7): research0034- 10.1186/gb-2002-3-7-research0034

Borrelli L, Fiorito G: Behavioral Analysis of Learning and Memory in Cephalopods. Learning Theory and Behavior. Vol. 1 (Menzel, R., Volume Editor) of Learning and Memory: A Comprehensive Reference, 4 vols. (Byrne, J., Editor). 2008, 605-628.

Hochner B, Shomrat T, Fiorito G: The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull. 2006, 210: 308-317. 10.2307/4134567

Young JZ: The Anatomy of the Central Nervous System of Octopus vulgaris. 1971, Claredon Press, Oxford,

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters. 2004, 26: 509-515. 10.1023/B:BILE.0000019559.84305.47

Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64: 5245-5250. 10.1158/0008-5472.CAN-04-0496

Fernandes JM, Mommens M, Hagen O, Babiak I, Solberg C: Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comp Biochem Physiol B Biochem Mol Biol. 2008, 150: 23-32. 10.1016/j.cbpb.2008.01.003

Olsvik PA, Lie KK, Jordal AEO, Nilsen TO, Hordvik I: Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol. 2005 Nov 17;6:21. 2005, 6: 21-

Zhong Q, Zhang Q, Wang Z, Qi J, Chen Y, Li S, Sun Y, Li C, Lan X: Expression profiling and validatio of potential reference genes during Paralichthylus olivaceus embryogenesis. Mar Biotechnol (NY). 2008, 10 (3): 310-8. 10.1007/s10126-007-9064-7

Toegel S, Huang WW, Piana C, Unger FM, Wirth M, Goldring MB, Gabor F, Viernstein H: Selection of reliable reference genes for qPCR studies on chondroprotective action. BMC Mol Biol. 2007, 8: 13- 10.1186/1471-2199-8-13

Hibbeler S, Scharsack JP, Becker S: Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus. BMC Mol Biol. 2008, 9: 18- 10.1186/1471-2199-9-18

Messenger JB: Neurotransmitters of cephalopods. Invertebrate Neuroscience. 1996, 2: 95-114. 10.1007/BF02214113.

Messenger JB, Nixon M, Ryan KP: Magnesium chloride as an anaesthetic for cephalopods. Comp Biochem Physiol C Comp Pharmacol. 1985, 82: 203-205. 10.1016/0742-8413(85)90230-0.

Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by: Krawetz S, Misener S. 2000, 365-386. Totowa, NJ: Humana Press

Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res. 2003, 31: 3406-3415. 10.1093/nar/gkg595