Selection and application of trophic magnification factors for priority substances to normalize freshwater fish monitoring data under the European Water Framework Directive: a case study
Tóm tắt
The European Water Framework Directive (WFD) requires the monitoring of biota—preferably fish—to check the compliance of tissue concentrations of priority substances (PS) against substance-specific environmental quality standards (EQSs). In monitoring programs, different fish species are covered, which often are secondary consumers with a trophic level (TL) of about 3. For harmonization, a normalization of monitoring data to a common trophic level is proposed, i.e., TL 4 (predatory fish) in freshwaters, so that data would be sufficiently protective. For normalization, the biomagnification properties of the chemicals can be considered by applying substance-specific trophic magnification factors (TMFs). Alternatively, TL-corrected biomagnification factors (BMFTLs) may be applied. Since it is impractical to derive site-specific TMFs or BMFTLs, often data from literature will be used for normalization. However, available literature values for TMFs and BMFTLs are quite varying. In the present study, the use of literature-derived TMFs and BMFTLs in data normalization is studied more closely. An extensive literature evaluation was conducted to identify appropriate TMFs for the WFD PS polybrominated diphenyl ethers (PBDE), hexachlorobenzene, perfluorooctane sulfonate (PFOS), dioxins and dioxin-like compounds (PCDD/F + dl-PCB), hexabromocyclododecane, and mercury. The TMFs eventually derived were applied to PS monitoring data sets of fish from different trophic levels (chub, bream, roach, and perch) from two German rivers. For comparison, PFOS and PBDE data were also normalized using literature-retrieved BMFTLs. The evaluation illustrates that published TMFs and BMFTLs for WFD PS are quite variable and the selection of appropriate values for TL 4 normalization can be challenging. The normalized concentrations partly included large uncertainties when considering the range of selected TMFs, but indicated whether an EQS exceedance at TL 4 can be expected. Normalization of the fish monitoring data revealed that levels of substances accumulating in the food web (TMF or BMF > 1) can be underestimated when relying on fish with TL < 4 for EQS compliance assessment. The evaluation also revealed that TMF specifically derived for freshwater ecosystems in Europe would be advantageous. Field-derived BMFTLs seemed to be no appropriate alternative to TMFs, because they can vary even stronger than TMFs.
Tài liệu tham khảo
EC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Official Journal of the European Communities, L327/1, 22.12.2000. http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF
EC (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy, Official Journal of the European Union, L226/1, 24.8.2013. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF
EC (2014) Guidance document no. 32 on biota monitoring: (the implementation of EQSbiota) under the Water Framework Directive. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Technical Report - 2014 - 083. ISBN 978-92-79-44634-4, Office for Official Publications of the European Communities, Luxembourg. pp 87, https://circabc.europa.eu/sd/a/62343f10-5759-4e7c-ae2b-12677aa57605/Guidance%20No%2032%20-%20Biota%20Monitoring.pdf
EC (2011) Guidance document no. 27: Technical Guidance For Deriving Environmental Quality Standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Technical Report - 2011 - 055. ISBN 978-92-79-16228-2, Office for Official Publications of the European Communities, Luxembourg, https://circabc.europa.eu/sd/a/0cc3581b-5f65-4b6f-91c6-433a1e947838/TGD-EQS%20CIS-WFD%2027%20EC%202011.pdf
Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241
Rüdel H, Radermacher G, Fliedner A, Lohmann N, Duffek A (2020) A field study in support of the monitoring of priority substances in German freshwater fish: derivation of fillet-to-whole fish conversion factors. Environ Sci Europe 32:13
Mackay D, Celsie AKD, Powell DE, Parnis JM (2018) Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective. Environ Sci Process Impacts 20:72–85
Burkhard LP, Borga K, Powell DE, Leonards P, Muir DC, Parkerton TF, Woodburn KB (2013) Improving the quality and scientific understanding of trophic magnification factors (TMFs). Environ Sci Technol 47:1186–1187
Borgå K, Kidd KA, Muir DC, Berglund O, Conder JM, Gobas FA, Kucklick J, Malm O, Powell DE (2012) Trophic magnification factors: considerations of ecology, ecosystems, and study design. Integr Environ Assess Manag 8:64–84
Franklin J (2016) How reliable are field-derived biomagnification factors and trophic magnification factors as indicators of bioaccumulation potential? Conclusions from a case study on per- and polyfluoroalkyl substances. Integr Environ Assess Manag 12:6–20
Conder JM, Gobas FA, Borga K, Muir DC, Powell DE (2012) Use of trophic magnification factors and related measures to characterize bioaccumulation potential of chemicals. Integr Environ Assess Manag 8:85–97
EC (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, Official Journal of the European Union, L 396/1, 30.12.2006. https://eur-lex.europa.eu/legal-content/en/TXT/?qid=1532936325230&uri=CELEX:02006R1907-20180509
Govaerts A, Verhaert V, Covaci A, Jaspers VLB, Berg OK, Addo-Bediako A, Jooste A, Bervoets L (2018) Distribution and bioaccumulation of POPs and mercury in the Ga-Selati River (South Africa) and the rivers Gudbrandsdalslagen and Rena (Norway). Environ Int 121:1319–1330
Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47:13385–13394
Guzzella LM, Novati S, Casatta N, Roscioli C, Valsecchi L, Binelli A, Parolini M, Solcà N, Bettinetti R, Manca M, Mazzoni M, Piscia R, Volta P, Marchetto A, Lami A, Marziali L (2018) Spatial and temporal trends of target organic and inorganic micropollutants in Lake Maggiore and Lake Lugano (Italian-Swiss water bodies): contamination in sediments and biota. Hydrobiologia 824:271–290
Kim J, Gobas FA, Arnot JA, Powell DE, Seston RM, Woodburn KB (2016) Evaluating the roles of biotransformation, spatial concentration differences, organism home range, and field sampling design on trophic magnification factors. Sci Total Environ 551–552:438–451
Zhang L, Campbell LM, Johnson TB (2012) Seasonal variation in mercury and food web biomagnification in Lake Ontario, Canada. Environ Pollut 161:178–184
Wu JP, Luo XJ, Zhang Y, Yu M, Chen SJ, Mai BX, Yang ZY (2009) Biomagnification of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls in a highly contaminated freshwater food web from South China. Environ Pollut 157:904–909
Walters D, Jardine T, Cade BS, Kidd K, Muir D, Leipzig-Scott P (2016) Trophic magnification of organic chemicals: a global synthesis. Environ Sci Technol 50:4650–4658
Kurt-Karakus PB, Muir DCG, de Jourdan B, Teixeira C, Epp Martindale J, Embers H, Wang X, Keir M, Backus S (2019) Bioaccumulation of selected halogenated organic flame retardants in Lake Ontario. Environ Toxicol Chem 38:1198–1210
Arle J, Mohaupt V, Kirst I (2016) Monitoring of Surface Waters in Germany under the Water Framework Directive - A Review of Approaches. Methods and Results. Water 8:217
Kidd KA, Burkhard LP, Babut M, Borga K, Muir DC, Perceval O, Ruedel H, Woodburn K, Embry MR (2019) Practical advice for selecting or determining trophic magnification factors for application under the European Union Water Framework Directive. Integr Environ Assess Manag 15:266–277
Radermacher G, Fliedner A, Rüdel H (2019) Concept for the implementation of the new environmental quality standards for priority substances in fish (Konzept zur Implementierung der neuen Umweltqualitätsnormen für prioritäre Stoffe in Fischen). German language report on project FKZ 3715 22 200 0.UBA-Texte 96/2019 (August 2019), Fraunhofer IME, Schmallenberg, Germany for German Environment Agency, Dessau-Rosslau, Germany. 180 p. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-08-27_texte_96-2019_wrrl-biotamonitoring.pdf
Umweltprobenbank (2020) Umweltprobenbank des Bundes. Website and databank of the German Environmental Specimen Bank. German Environment Agency, Dessau-Rosslau. https://www.umweltprobenbank.de/en/documents, https://www.umweltprobenbank.de/en/documents
Rüdel H, Uhlig S, Weingärtner M (2009) German Environmental Specimen Bank: Guidelines for Sampling and Sample Processing. Pulverisation and Homogenisation of Environmental Samples by Cryomilling. Standard Operating Procedure (SOP) Umweltbundesamt, Dessau-Rosslau. https://www.umweltprobenbank.de/upb_static/fck/download/IME_SOP_preparation_Dez2008_V200.pdf, https://www.umweltprobenbank.de/upb_static/fck/download/IME_SOP_preparation_Dez2008_V200.pdf
Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718
EC (2009) Commission Directive 2009/90/EC of 31 July 2009 laying down, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for chemical analysis and monitoring of water status (QA/QC-Directive), Official Journal of the European Union L 201/36-38. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0090&from=EN
Nguetseng R, Fliedner A, Knopf B, Lebreton B, Quack M, Rüdel H (2015) Retrospective monitoring of mercury in fish from selected European freshwater and estuary sites. Chemosphere 134:427–434
Smedes F (1999) Determination of total lipid using non-chlorinated solvents. Analyst 124:1711–1718
Bevelhimer MS, Beauchamp JJ, Sample BE, Southworth GR (1997) Estimation of Whole-Fish Contaminant Concentrations from Fish Fillet Data. Technical Report ES/ER/TM-202, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA. https://rais.ornl.gov/documents/tm202.pdf
Fliedner A, Rüdel H, Lohmann N, Buchmeier G, Koschorreck J (2018) Biota monitoring under the Water Framework Directive: on tissue choice and fish species selection. Environ Pollut 235:129–140
Kucklick JR, Baker JE (1998) Organochlorines in Lake Superior’s Food Web. Environ Sci Technol 32:1192–1198
Simonnet-Laprade C, Budzinski H, Maciejewski K, Le Menach K, Santos R, Alliot F, Goutte A, Labadie P (2019) Biomagnification of perfluoroalkyl acids (PFAAs) in the food web of an urban river: assessment of the trophic transfer of targeted and unknown precursors and implications. Environ Sci Process Impacts 21:1864–1874
Hoekstra PF, O’Hara TM, Fisk AT, Borga K, Solomon KR, Muir DC (2003) Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort-Chukchi Seas. Environ Pollut 124:509–522
Figueiredo K, Maenpaa K, Leppanen MT, Kiljunen M, Lyytikainen M, Kukkonen JV, Koponen H, Biasi C, Martikainen PJ (2014) Trophic transfer of polychlorinated biphenyls (PCB) in a boreal lake ecosystem: testing of bioaccumulation models. Sci Total Environ 466–467:690–698
Law K, Halldorson T, Danell R, Stern G, Gewurtz S, Alaee M, Marvin C, Whittle M, Tomy G (2006) Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web. Environ Toxicol Chem 25:2177–2186
Wong CS, Mabury SA, Whittle DM, Backus SM, Teixeira C, DeVault DS, Bronte CR, Muir DC (2004) Organochlorine compounds in Lake Superior: chiral polychlorinated biphenyls and biotransformation in the aquatic food web. Environ Sci Technol 38:84–92
Tomy GT, Budakowski W, Halldorson T, Whittle DM, Keir MJ, Marvin C, MacInnis G, Alaee M (2004) Biomagnification of α- and γ-Hexabromocyclododecane Isomers in a Lake Ontario Food Web. Environ Sci Technol 38:2298–2303
Martin JW, Whittle DM, Muir DC, Mabury SA (2004) Perfluoroalkyl contaminants in a food web from Lake Ontario. Environ Sci Technol 38:5379–5385
Houde M, Czub G, Small JM, Backus S, Wang X, Alaee M, Muir DCG (2008) Fractionation and bioaccumulation of perfluorooctane sulfonate (PFOS) isomers in a Lake Ontario food web. Environ Sci Technol 42:9397–9403
Jardine TD, Kidd KA, O’ Driscoll N (2013) Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquat Toxicol 132–133:46–52
Su G, Letcher RJ, McGoldrick DJ, Backus SM (2017) Halogenated flame retardants in predator and prey fish from the Laurentian Great Lakes: age-dependent accumulation and trophic transfer. Environ Sci Technol 51:8432–8441
Pérez-Fuentetaja A, Mackintosh SA, Zimmerman LR, Clapsadl MD, Alaee M, Aga DS (2015) Trophic transfer of flame retardants (PBDEs) in the food web of Lake Erie. Can J Fish Aquat Sci 72:1886–1896
Poma G, Roscioli C, Guzzella L (2014) PBDE, HBCD, and novel brominated flame retardant contamination in sediments from Lake Maggiore (Northern Italy). Environ Monit Assess 186:7683–7692
Borgå K, Fjeld E, Kierkegaard A, McLachlan MS (2013) Consistency in trophic magnification factors of cyclic methyl siloxanes in pelagic freshwater food webs leading to brown trout. Environ Sci Technol 47:14394–14402
Jartun M, Økelsrud A, Rundberget T, Enge EK, Rostkowski P, Warner NA, Harju M, Johansen I (2019) Monitoring of environmental contaminants in freshwater ecosystems 2018—Occurrence and biomagnification Norwegian Institute for Water Research. Report SNO 7397-2019. pp. 108. https://niva.brage.unit.no/niva-xmlui/handle/11250/2610499
Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA (2006) Levels and trends of brominated flame retardants in the European environment. Chemosphere 64:187–208
Hu GC, Dai JY, Xu ZC, Luo XJ, Cao H, Wang JS, Mai BX, Xu MQ (2010) Bioaccumulation behavior of polybrominated diphenyl ethers (PBDEs) in the freshwater food chain of Baiyangdian lake, north China. Environ Int 36:309–315
Villa S, Bizzotto EC, Vighi M (2011) Persistent organic pollutant in a fish community of a sub-alpine lake. Environ Pollut 159:932–939
Houde M, Muir DC, Kidd KA, Guildford S, Drouillard K, Evans MS, Wang X, Whittle DM, Haffner D, Kling H (2008) Influence of lake characteristics on the biomagnification of persistent organic pollutants in lake trout food webs. Environ Toxicol Chem 27:2169–2178
Helm PA, Gewurtz SB, Whittle DM, Marvin CH, Fisk AT, Tomy GT (2008) Occurrence and biomagnification of polychlorinated naphthalenes and non- and mono-ortho PCBs in Lake Ontario sediment and biota. Environ Sci Technol 42:1024–1031
Walters DM, Mills MA, Cade BS, Burkard LP (2011) Trophic magnification of PCBs and Its relationship to the octanol-water partition coefficient. Environ Sci Technol 45:3917–3924
McGoldrick DJ, Chan C, Drouillard KG, Keir MJ, Clark MG, Backus SM (2014) Concentrations and trophic magnification of cyclic siloxanes in aquatic biota from the Western Basin of Lake Erie, Canada. Environ Pollut 186:141–148
Muir DCG, Whittle DM, De Vault DS, Bronte CR, Karlsson H, Backus S, Teixeira C (2004) Bioaccumulation of toxaphene congeners in the lake superior food web. J Great Lakes Res 30:316–340
Walters DM, Fritz KM, Johnson BR, Lazorchak JM, McCormick FH (2008) Influence of trophic position and spatial location on polychlorinated biphenyl (PCB) bioaccumulation in a stream food web. Environ Sci Technol 42:2316–2322
Zhang Y, Sun H, Liu F, Dai Y, Qin X, Ruan Y, Zhao L, Gan Z (2013) Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure. Chemosphere 93:1561–1568
Mazzoni M, Ferrario C, Bettinetti R, Piscia R, Cicala D, Volta P, Borgå K, Valsecchi S, Polesello S (2020) Trophic Magnification of Legacy (PCB, DDT and Hg) and Emerging Pollutants (PFAS) in the Fish Community of a Small Protected Southern Alpine Lake (Lake Mergozzo, Northern Italy). Water 12:1591
Simonnet-Laprade C, Budzinski H, Babut M, Le Menach K, Munoz G, Lauzent M, Ferrari BJD, Labadie P (2019) Investigation of the spatial variability of poly- and perfluoroalkyl substance trophic magnification in selected riverine ecosystems. Sci Total Environ 686:393–401
Lecloux A (2004) Hexachlorobutadiene—Sources, environmental fate and risk characterisation. Euro Chlor, Brussels
EC (2005) Hexachlorobutadiene Substance Data Sheet. Priority Substance No. 17, CAS-No. 87-68-3. Final version 31 July 2005, Bruxelles, Belgium, https://circabc.europa.eu/sd/a/fb6d30e8-2fbf-48ae-9554-ce72f286f30e/17_HxChlButadiene_EQSdatasheet_310705.pdf
Goldbach RW, van Genderen H, Leeuwangh P (1976) Hexachlorobutadiene residues in aquatic fauna from surface water fed by the river rhine. Sci Total Environ 6:31–40
FGG Elbe (2018) Schadstoffuntersuchungen in Biota. Sonderuntersuchungen im Rahmen des KEMP 2016. Projektbericht. Flussgebietsgemeinschaft Elbe. pp 84, https://www.fgg-elbe.de/tl_files/Download-Archive/Fachberichte/Biomonitoring_Fische/2018-05-18_Abschlussbericht_Biotauntersuchung_Homepage.pdf
IKSR (2018) Statistische Auswertung von Messungen zur Kontamination von Biota/Fischen mit Schadstoffen im Einzugsgebiet des Rheins in den Jahren 2014/2015. Internationale Kommission zum Schutz des Rheins (IKSR), Hrsg. Koblenz, 2018. Bericht Nr. 252. Report by Fraunhofer IME, Schmallenberg. (Available in German, Dutch and French), https://www.iksr.org/fileadmin/user_upload/DKDM/Dokumente/Fachberichte/DE/rp_De_0252.pdf
Leeves SA (2011) Bioaccumulation of arsenic, cadmium, mercury, lead and selenium in the benthic and pelagic food chain of Lake Baikal [Master’s thesis]. Norwegian University of Science and Technology Department of Biology, Trondheim. https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/244846/438669_FULLTEXT01.pdf?sequence=1&isAllowed=yhttps://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/244846/438669_FULLTEXT01.pdf?sequence=1&isAllowed=y
Ovie SI, Ovie SO (2006) Moisture, protein, and amino acid contents of three freshwater zooplankton used as feed for aquacultured larvae and postlarvae. Isr J Aquacult 58:29–33
ECETOC (2014) Information to be considered in a weight-of-evidence-based PBT/vPvB assessment of chemicals (Annex XIII of REACH). Special report No. 18, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium., http://www.ecetoc.org/wp-content/uploads/2014/08/20140801130633-ECETOC_Special_Report_No__18.pdf