Second order anisotropy contribution in perpendicular magnetic tunnel junctions
Tóm tắt
Hard-axis magnetoresistance loops were measured on perpendicular magnetic tunnel junction pillars of diameter ranging from 50 to 150 nm. By fitting these loops to an analytical model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340 K and 5 K were determined. It is found that a second-order anisotropy term of the form −K2cos4θ must be added to the conventional uniaxial –K1cos2θ term to explain the experimental data. This higher order contribution exists both in the free and reference layers. At T = 300 K, the estimated −K2/K1 ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures changing the ground state of the reference layer from “easy-axis” to “easy-cone” regime. The easy-cone regime has clear signatures in the shape of the hard-axis magnetoresistance loops. The existence of this higher order anisotropy was also confirmed by ferromagnetic resonance experiments on FeCoB/MgO sheet films. It is of interfacial nature and is believed to be due to spatial fluctuations at the nanoscale of the first order anisotropy parameter at the FeCoB/MgO interface.
Tài liệu tham khảo
Néel, L. Anisotropie magnétique superficielle et sur structures d’orientation. J. Phys. Rad. 15, 225 (1954).
Gradmann, U. & Müller, J. Flat ferromagnetic, epitaxial 48Ni/52Fe (111) films of few atomic layers. Phys. Status Solidi B 27, 313 (1968).
Johnson, M. T., Bloemen, P. J. H., Den Broeder, F. J. A. & De Vries, J. J. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409 (1996).
Grünberg, P. Layered magnetic structures: history, facts and figures. J. Magn. Magn. Mater. 226, 1688 (2001).
Yang, H. X. et al. First-principles investigation of the very large perpendicular magnetic anisotropy at Fe| MgO and Co| MgO interfaces. Phys. Rev. B 84, 054401 (2011).
Chen, C. W. Fabrication and characterization of thin films with perpendicular magnetic anisotropy for high-density magnetic recording. J. Mater. Sci. 26, 3125 (1991).
Jensen, P. J. & Bennemann, K. H. Magnetic structure of films: Dependence on anisotropy and atomic morphology. Surf. Sci. Rep. 61, 129 (2006).
Sbiaa, R., Meng, H. & Piramanayagam, S. N. Materials with perpendicular magnetic anisotropy for magnetic random access memory. Phys. Status Solidi RRL 5, 413 (2011).
Nistor, L. E. et al. Oscillatory interlayer exchange coupling in MgO tunnel junctions with perpendicular magnetic anisotropy. Phys. Rev. B 81, 220407 (2010).
Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721 (2010).
Nishimura, N. et al. Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J. Appl. Phys. 91, 5246 (2002).
Yakushiji, K., Fukushima, A., Kubota, H., Konoto, M. & Yuasa, S. Ultralow-Voltage spin-transfer switching in perpendicularly magnetized magnetic tunnel junctions with synthetic antiferromagnetic reference layer. Appl. Phys. Express 6, 113006 (2013).
Hallal, A., Yang, H. X., Dieny, B. & Chshiev, M. Anatomy of perpendicular magnetic anisotropy in Fe/MgO magnetic tunnel junctions: First-principles insight. Phys. Rev. B 88, 184423 (2013).
Stamps, R. L., Louail, L., Hehn, M., Gester, M. & Ounadjela, K. Anisotropies, cone states and stripe domains in Co/Pt multilayers. J. Appl. Phys. 81, 4751 (1997).
Stillrich, H., Menk, C., Frömter, R. & Oepen, H. P. Magnetic anisotropy and the cone state in Co/Pt multilayer films. J. Appl. Phys. 105, 07C308 (2009).
Lee, J. W., Jeong, J. R., Shin, S. C., Kim, J. & Kim, S. K. Spin-reorientation transitions in ultrathin Co films on Pt (111) and Pd (111) single-crystal substrates. Phys. Rev. B 66, 172409 (2002).
Castro, G. M. B., Geshev, J. P., Schmidt, J. E., Baggio-Saitovitch, E. & Nagamine, L. C. C. M. Cone magnetization state and exchange bias in IrMn/Cu/[Co/Pt]3 multilayers. J. Appl. Phys. 106, 113922 (2009).
Quispe-Marcatoma, J. et al. Spin reorientation transition in Co/Au multilayers. Thin Solid Films 568, 117 (2014).
Shaw, J. M. et al. Perpendicular Magnetic Anisotropy and Easy Cone State in Ta/Co60Fe20B20/MgO. IEEE Magn. Lett. 6, 1 (2015).
Dieny, B. & Vedyayev, A. Crossover from easy-plane to perpendicular anisotropy in magnetic thin films: canted anisotropy due to partial coverage or interfacial roughness. EPL 25, 723 (1994).
Sun, J. Z. Consequences of an interface-concentrated perpendicular magnetic anisotropy in ultrathin CoFeB films used in magnetic tunnel junctions. Phys. Rev. B 91, 174429 (2015).
Sato, H. et al. Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm. Appl. Phys. Lett. 105, 062403 (2014).
Timopheev, A. A., Sousa, R., Chshiev, M., Buda-Prejbeanu, L. D. & Dieny, B. Respective influence of in-plane and out-of-plane spin-transfer torques in magnetization switching of perpendicular magnetic tunnel junctions. Phys. Rev. B 92, 104430 (2015).
Jaffrès, H. et al. Angular dependence of the tunnel magnetoresistance in transition-metal-based junctions. Phys. Rev. B 64, 064427 (2001).
Bozorth, R. Ferromagnetism. Van Nostrand (1968).
Tomáš, I., Murtinova, L. & Kaczer, J. Easy magnetization axes in materials with combined cubic and uniaxial anisotropies. Phys. Status Solidi A 75, 121 (1983).
Yu, G. et al. Strain-induced modulation of perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures investigated by ferromagnetic resonance. Appl. Phys. Lett. 106, 072402 (2015).
Barsukov, I. et al. Magnetic phase transitions in Ta/CoFeB/MgO multilayers. Appl. Phys. Lett. 106, 192407 (2015).
Apalkov, D. & Druist, D. Inventors; Samsung Electronics Co., Ltd., assignee. Method and system for providing spin transfer based logic devices. United States patent US 8,704,547. 2004 Apr 22.
Matsumoto, R., Arai, H., Yuasa, S. & Imamura, H. Theoretical analysis of thermally activated spin-transfer-torque switching in a conically magnetized nanomagnet. Phys. Rev. B 92, 140409 (2015).