Mô hình sử dụng nước theo mùa của các loài cây thân gỗ mọc trên các tầng đá dolostone liên tục và đất mỏng ở vùng cận nhiệt đới Trung Quốc

Yun-peng Nie1,2,3, Hong-song Chen1,2, Ke-lin Wang1,2, Wei Tan1,2, Peng-yan Deng1, Jing Yang1,2,3
1Huanjiang Observation and Research Station for Karst Eco-systems, Chinese Academy of Sciences, Huanjiang, China
2Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
3Graduate School of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Trong các vùng karst, rừng thường mọc trên các khối đá nền, tuy nhiên nguồn nước được thực vật rừng sử dụng vẫn chưa được biết đến. Nghiên cứu này nhằm điều tra xem có sự thay đổi theo mùa (mùa khô/mùa ướt) của các nguồn nước cho các loài cây mọc trên các khối đá dolostone liên tục hay không, và so sánh sự khác biệt của chúng với những loài mọc trên đất mỏng gần đó ở các vùng karst của tây nam Trung Quốc. Nước mưa, nước đất trong độ sâu 0-30 cm, nước suối (phản ánh nguồn nước sâu địa phương) và nước xylem của thực vật đã được lấy mẫu vào tháng 3 (cuối mùa khô) và tháng 7 (giữa mùa mưa) năm 2009. Một phương pháp suy diễn trực tiếp và mô hình IsoSource đã được sử dụng để ước tính tỷ lệ đóng góp của các nguồn khác nhau vào nước xylem của thực vật. Trên các khối đá, loài cây rụng lá Radermachera sinica chủ yếu sử dụng nguồn nước sâu trong mùa khô và hỗn hợp giữa nước mưa và nước sâu trong mùa ướt. Ngược lại, loài cây bụi nhỏ rụng lá Alchornea trewioides chủ yếu dựa vào nước mưa gần đây trong cả mùa khô và mùa ướt. Ba loài không rụng lá (Sterculia euosma, Schefflera octophylla và Ficus orthoneura) dường như phụ thuộc vào nguồn nước sâu trong các mùa ướt. Trong những đất mỏng gần đó, R. sinica chủ yếu sử dụng nước sâu trong mùa khô và hỗn hợp giữa nước đất và nước sâu trong mùa ướt. A. trewioides dựa vào các nguồn nước giống nhau (nước đất từ nước mưa) trong các mùa khác nhau. Kết quả trên cho thấy sự khác biệt giữa các loài về kiểu rễ và chu trình lá có thể dẫn đến sự khác biệt trong các nguồn nước mà các loài cây cùng sinh sống trong các vùng karst sử dụng.

Từ khóa

#karst #nguồn nước #mùa khô #mùa ướt #thực vật rừng #cây thân gỗ

Tài liệu tham khảo

Andrade JL, Meinzer FC, Goldstein G, Schnitzer SA (2005) Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees Struct Funct 19(3):282–289 Asbjornsen H, Mora G, Helmers MJ (2007) Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern US. Agric Ecosyst Environ 121(4):343–356 Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160 Bendevis MA, Owens MK, Heilman JL, McInnes KJ (2010) Carbon exchange and water loss from two evergreen trees in a semiarid woodland. Ecohydrology 3(1):107–115 Benstead JP, March JG, Fry B, Ewel KC, Pringle CM (2006) Testing IsoSource: stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology 87(2):326–333 Bonacci O (2001) Analysis of the maximum discharge of karst springs. Hydrogeol J 9(4):328–338 Brooks JR, Barnard HR, Coulombe R, McDonnell JJ (2010) Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat Geosci 3:100–104 Brunel JP, Walker GR, Kennett-Smith AK (1995) Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. J Hydrol 167(1–4):351–368 Chen HS, Zhang W, Wang KL, Fu W (2010) Soil moisture dynamics under different landuses on karst hillslope in northwest Guangxi, China. Environ Earth Sci 61(6):1105–1111 Chimner RA, Cooper DJ (2004) Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA. Plant Soil 260(1):225–236 Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574 Dawson TE, Pate JS (1996) Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia 107(1):13–20 Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559 DeWalle DR, Swistock BR, Sharpe WE (1988) Three-component tracer model for stormflow on a small Applachian forested catchment. J Hydrol 104:301–310 Ehleringer JR, Roden J, Dawson TE (2000) Assessing ecosystem-level water relations through stable isotope ratio analyses. In: Sala OE (ed) Methodsin ecosystem science. Springer, New York, pp 181–214 Ehrlinger JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082 Gazis C, Feng XH (2004) A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 119:97–111 Heilman JL, McInnes KJ, Kjelgaard JF, Keith Owens M, Schwinning S (2009) Energy balance and water use in a subtropical karst woodland on the Edwards Plateau, Texas. J Hydrol 373(3–4):426–435 Hubbert KR, Beyers JL, Graham RC (2001) Roles of weathered bedrock and soil in seasonal water relations of Pinus jeffreyi and Arctostaphylos patula. Can J For Res 31(11):1947–1957 Ingraham NL (1998) Isotopic variations in precipitation. In: Kendall C (ed) Isotope tracers in catchment hydrology. Elsevier, New York, pp 87–118 Ingraham NL, Lyles BF, Jacobson RL, Hess JW (1991) Stable isotopic study of precipitation and spring discharge in southern Nevada. J Hydrol 125(3–4):243–258 Johnson KR, Ingram BL (2004) Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions. Earth Planet Sci Lett 220(3–4):365–377 Jones IC, Banner JL, Humphrey JD (2000) Estimating recharge in a tropical karst aquifer. Water Resour Res 36(5):1289–1299 Jurena PN, Archer S (2005) Response of two perennial grasses to root barriers and fissures. J Arid Environ 61(2):185–192 Kulmatiski A, Beard KH, Stark JM (2006) Exotic plant communities shift water-use timing in a shrub-steppe ecosystem. Plant Soil 288(1):271–284 Li SG, Romero-Saltos H, Tsujimura M, Sugimoto A, Sasaki L, Davaa G, Oyunbaatar D (2007) Plant water sources in the cold semiarid ecosystem of the upper Kherlen River catchment in Mongolia: A stable isotope approach. J Hydrol 333(1):109–117 Lilley JM, Fukai S (1994) Effect of timing and severity of water deficit on four diverse rice cultivars I. Rooting pattern and soil water extraction. Field Crops Res 37(3):205–213 Liu JW, Chen HS, Zhang W, Shi DM (2008) Soil water infiltration measurement by disc permeameter in karst depression (in Chinese). J Soil Water Conserv 22(6):202–206 McCole AA, Stern LA (2007) Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. J Hydrol 342(3–4):238–248 Monaco TA, Johnson DA, Creech JE (2005) Morphological and physiological responses of the invasive weed Isatis tinctoria to contrasting light, soil-nitrogen and water. Weed Res 45:460–466 O’Grady AP, Eamus D, Hutley LB (1999) Transpiration increases during the dry season: patterns of tree water use in eucalypt open-forests of northern Australia. Tree Physiol 19(9):591–597 Perrin J, Jeannin PY, Zwahlen F (2003) Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland. J Hydrol 279(1–4):106–124 Phillips DL (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127(2):166–170 Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136(2):261–269 Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527 Poot P, Lambers H (2008) Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. New Phytol 178(2):371–381 Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ, Ruenes R (2006) Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate. Plant Soil 287(1):187–197 Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ (2007) Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152(1):26–36 Quesada CA, Hodnett MG, Breyer LM, Santos AJB, Andrade S, Miranda HS, Miranda AC, Lloyd J (2008) Seasonal variations in soil water in two woodland savannas of central Brazil with different fire histories. Tree Physiol 28(3):405–415 Romero-Saltos H, Sternberg LSL, Moreira MZ, Nepstad DC (2005) Rainfall exclusion in an eastern Amazonian forest alters soil water movement and depth of water uptake. Am J Bot 92(3):443–455 Rose K, Graham R, Parker D (2003) Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Oecologia 134(1):46–54 Rozanski K, Araguds-Araguds L, Gonfantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohman KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records—Geophysical Monograph 78. American Geophysical Union, Washington DC, pp 1–36 Ruiz L, Varma MRR, Kumar MSM, Sekhar M, Marechal JC, Descloitres M, Riotte J, Kumar S, Kumar C, Braun JJ (2010) Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matric storage buffers the groundwater recharge process. J Hydrol 380:460–472 Schenk HJ (2008) Soil depth, plant rooting strategies and species’ niches. New Phytol 178(2):223–225 Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126(1–2):129–140 Scholefield D, Hall DM (1985) Constricted growth of grass roots through rigid pores. Plant Soil 85(2):153–162 Schwinning S (2008) The water relations of two evergreen tree species in a karst savanna. Oecologia 158(3):373–383 Schwinning S (2010) The ecohydrology of roots in rocks. Ecohydrology 3:238–245 Sekiya N, Yano K (2002) Water acquisition from rainfall and groundwater by legume crops developing deep rooting systems determined with stable hydrogen isotope compositions of xylem waters. Field Crops Res 78(2–3):133–139 Swemmer AM, Knapp AK, Smith MD (2006) Growth responses of two dominant C4 grass species to altered water availability. Int J Plant Sci 167(5):1001–1010 Wang ZQ, Newton M, Tappeiner II, John C (1995) Competitive relations between Douglas-fir and Pacific madrone on shallow soils in a Mediterranean climate. For Sci 41(4):744–757 Weaver JA, Jurena PN (2009) Response of newly established Juniperus ashei and Carex planostachys plants to barrier-induced water restriction in surface soil. J Arid Environ 73(3):267–272 West AG, Hultine KR, Burtch KG, Ehleringer JR (2007) Seasonal variations in moisture use in a piñon-juniper woodland. Oecologia 153(4):787–798 West AG, Sperry JS, Bush SE, Ehleringer JR (2008) Transpiration and hydraulic strategies in a pinon-juniper woodland. Ecol Appl 18(4):911–927 White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65(2–3):85–105 Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37(1):1–10 Williams DG, Ehleringer JR (2000) Intra-and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol Monogr 70(4):517–537 Xu H, Li Y (2006) Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant Soil 285(1):5–17 Xu H, Li Y, Xu G, Zou T (2007) Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ 30(4):399–409 Zhang X, Nakawo M, Yao T, Han J, Xie Z (2002) Variations of stable isotopic compositions in precipitation on the Tibetan Plateau and its adjacent regions (in Chinese). Sci China D Earth Sci 45(6):481–493 Zwieniecki MA, Newton M (1995) Roots growing in rock fissures: their morphological adaptation. Plant Soil 172(2):181–187 Zwieniecki MA, Newton M (1996) Seasonal pattern of water depletion from soil-rock profiles in a Mediterranean climate in southwestern Oregon. Can J For Res 26(8):1346–1352