Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
National Renewable Energy Laboratory (NREL), http//www.nrel.gov/ncpv/images/efficiency_chart.jpg, accessed August 12, 2016
Zhou, 2014, Science, 345, 542, 10.1126/science.1254050
Jeon, 2015, Nature, 517, 476, 10.1038/nature14133
Yang, 2015, Science, 348, 1234, 10.1126/science.aaa9272
Saliba, 2016, Science, 354, 206, 10.1126/science.aah5557
Hao, 2014, Nat. Photonics, 8, 489, 10.1038/nphoton.2014.82
Noel, 2014, Energy Environ. Sci., 7, 3061, 10.1039/C4EE01076K
Lee, 2016, J. Am. Chem. Soc., 138, 3974, 10.1021/jacs.6b00142
Liao, 2016, Adv. Mater., 28, 9333, 10.1002/adma.201602992
Park, 2015, Adv. Mater., 27, 6806, 10.1002/adma.201501978
Lyu, 2016, Nano Res., 9, 692, 10.1007/s12274-015-0948-y
Sun, 2016, APL Mater., 4, 31101, 10.1063/1.4943680
Lehner, 2015, Chem. Mater., 27, 7137, 10.1021/acs.chemmater.5b03147
Slavney, 2016, J. Am. Chem. Soc., 138, 2138, 10.1021/jacs.5b13294
Maughan, 2016, J. Am. Chem. Soc., 138, 8453, 10.1021/jacs.6b03207
Meng, 2016, Chem. Mater., 28, 821, 10.1021/acs.chemmater.5b04213
Hong, 2016, J. Phys. Chem. C, 120, 6435, 10.1021/acs.jpcc.6b00920
Saparov, 2016, Chem. Mater., 28, 2315, 10.1021/acs.chemmater.6b00433
Giustino, 2016, ACS Energy Lett., 1, 1233, 10.1021/acsenergylett.6b00499
Yin, 2014, Adv. Mater., 26, 4653, 10.1002/adma.201306281
Yin, 2015, J. Mater. Chem. A, 3, 8926, 10.1039/C4TA05033A
Yin, 2015, J. Phys. Chem. C, 119, 5253, 10.1021/jp512077m
Ganose, 2016, Chem. Commun., 52, 10.1039/C6CC06475B
Saparov, 2016, Chem. Rev., 116, 4558, 10.1021/acs.chemrev.5b00715
Stoumpos, 2013, Inorg. Chem., 52, 9019, 10.1021/ic401215x
Zhang, 2014, Sci. Rep., 4, 6954, 10.1038/srep06954
Lee, 2014, J. Am. Chem. Soc., 136, 15379, 10.1021/ja508464w
Saparov, 2015, Chem. Mater., 27, 5622, 10.1021/acs.chemmater.5b01989
Harikesh, 2016, Chem. Mater., 28, 7496, 10.1021/acs.chemmater.6b03310
Hebig, 2016, ACS Energy Lett., 1, 309, 10.1021/acsenergylett.6b00170
McClure, 2016, Chem. Mater., 28, 1348, 10.1021/acs.chemmater.5b04231
Wei, 2016, Mater. Horiz., 3, 328, 10.1039/C6MH00053C
Deng, 2016, J. Mater. Chem. A, 4, 12025, 10.1039/C6TA05817E
Kim, 2016, Angew. Chem., Int. Ed., 55, 9586, 10.1002/anie.201603608
Xiao, 2016, J. Phys. Chem. Lett., 7, 3903, 10.1021/acs.jpclett.6b01834
Öz, 2016, Sol. Energy Mater. Sol. Cells, 158, 195, 10.1016/j.solmat.2016.01.035
Krishnamoorthy, 2015, J. Mater. Chem. A, 3, 23829, 10.1039/C5TA05741H
Smith, 2014, Angew. Chem., Int. Ed., 126, 11414, 10.1002/ange.201406466
Slavney, 2016, Inorg. Chem.
Mitzi, 1999, Prog. Inorg. Chem., 48, 1
Mitzi, 2001, J. Chem. Soc., Dalton. Trans., 1, 10.1039/b007070j
Knutson, 2005, Inorg. Chem., 44, 4699, 10.1021/ic050244q
Ishihara, 1994, J. Lumin., 60–61, 269, 10.1016/0022-2313(94)90145-7
Tanaka, 2003, Sci. Technol. Adv. Mater., 4, 599, 10.1016/j.stam.2003.09.019
Papavassiliou, 1996, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 286, 231, 10.1080/10587259608042291
Ishihara, 1990, Phys. Rev. B: Condens. Matter Mater. Phys., 42, 11099, 10.1103/PhysRevB.42.11099
Xiao, 2016, J. Phys. Chem. Lett., 7, 1213, 10.1021/acs.jpclett.6b00248
Umeyama, 2016, Chem. Mater., 28, 3241, 10.1021/acs.chemmater.6b01147
Quan, 2016, J. Am. Chem. Soc., 138, 2649, 10.1021/jacs.5b11740
Stoumpos, 2016, Chem. Mater., 28, 2852, 10.1021/acs.chemmater.6b00847
Cao, 2015, J. Am. Chem. Soc., 137, 7843, 10.1021/jacs.5b03796
Koutselas, 1997, Synth. Met., 86, 2171, 10.1016/S0379-6779(97)81081-8
Yunakova, 2012, Opt. Spectrosc., 112, 91, 10.1134/S0030400X12010249
Mitzi, 1994, Nature, 369, 467, 10.1038/369467a0
Mitzi, 1995, Science, 267, 1473, 10.1126/science.267.5203.1473
Papavassiliou, 1994, Solid State Commun., 91, 695, 10.1016/0038-1098(94)00435-8
Stoumpos, 2015, J. Am. Chem. Soc., 137, 6804, 10.1021/jacs.5b01025
Sun, 2014, J. Mater. Chem., 2, 303, 10.1039/C3TA14132B
Lu, 2016, RSC Adv., 6, 86976, 10.1039/C6RA18534G
Shannon, 1976, Acta Crystallogr., A32, 751, 10.1107/S0567739476001551
Travis, 2016, Chem. Sci., 7, 4548, 10.1039/C5SC04845A
Abulikemu, 2016, J. Mater. Chem. A, 4, 12504, 10.1039/C6TA04657F
Vigneshwaran, 2016, Chem. Mater., 28, 6436, 10.1021/acs.chemmater.6b02315
Hoye, 2016, Chem. – Eur. J., 22, 2605, 10.1002/chem.201505055
Eckhardt, 2016, Chem. Commun., 52, 3058, 10.1039/C5CC10455F
Singh, 2016, ACS Appl. Mater. Interfaces, 8, 14542, 10.1021/acsami.6b02843
Huang, 2016, J. Phys. Chem. C
Sun, 2016, Angew. Chem., Int. Ed., 55, 11854, 10.1002/anie.201606079
Zhang, 2016, Nano Res., 9, 2921, 10.1007/s12274-016-1177-8
Machulin, 2004, Low Temp. Phys., 30, 964, 10.1063/1.1820036
Trots, 2008, J. Phys. Chem. Solids, 69, 2520, 10.1016/j.jpcs.2008.05.007
Yeh, 1993, Acta Crystallogr., Sect. B: Struct. Sci., 49, 806, 10.1107/S0108768193003246
Raptopoulou, 2002, Zeitschrift für Naturforsch. B, 57, 645, 10.1515/znb-2002-0609
Moller, 1960, K. Dan. Vidensk. Selsk., Mat.-Fys. Medd., 32, 1
Saidaminov, 2016, ACS Energy Lett., 1, 840, 10.1021/acsenergylett.6b00396
Umari, 2014, Sci. Rep., 4, 4467, 10.1038/srep04467
Yin, 2014, Appl. Phys. Lett., 104, 63903, 10.1063/1.4864778
Umebayashi, 2003, Phys. Rev. B: Condens. Matter Mater. Phys., 67, 155405, 10.1103/PhysRevB.67.155405
Kamminga, 2016, Chem. Mater., 28, 4554, 10.1021/acs.chemmater.6b00809
Xiao, 2016, Phys. Chem. Chem. Phys., 18, 25786, 10.1039/C6CP05302E
Mao, 2016, Chem. Mater., 28, 7781, 10.1021/acs.chemmater.6b03054
Safdari, 2016, J. Mater. Chem. A, 4, 15638, 10.1039/C6TA05055G
Liu, 2016, Synth. Met., 215, 56, 10.1016/j.synthmet.2015.11.028
Tsai, 2016, Nature, 536, 312, 10.1038/nature18306
Mitzi, 2001, Chem. Mater., 13, 3728, 10.1021/cm010105g
Xu, 2003, Inorg. Chem., 42, 2031, 10.1021/ic0261474
Baikie, 2013, J. Mater. Chem. A, 1, 5628, 10.1039/c3ta10518k
Quarti, 2016, Energy Environ. Sci., 9, 155, 10.1039/C5EE02925B
Geng, 2014, J. Phys. Chem. C, 118, 19565, 10.1021/jp504951h
Mousdis, 1998, J. Mater. Chem., 8, 2259, 10.1039/a802926a
Agiorgousis, 2014, J. Am. Chem. Soc., 136, 14570, 10.1021/ja5079305
Du, 2015, J. Phys. Chem. Lett., 6, 1461, 10.1021/acs.jpclett.5b00199
Volonakis, 2016, J. Phys. Chem. Lett., 7, 1254, 10.1021/acs.jpclett.6b00376
Filip, 2016, J. Phys. Chem. Lett., 7, 2579, 10.1021/acs.jpclett.6b01041
Xiao, 2016, ChemSusChem, 9, 2628, 10.1002/cssc.201600771
Savory, 2016, ACS Energy Lett., 1, 949, 10.1021/acsenergylett.6b00471
Kaltzoglou, 2016, J. Phys. Chem. C, 120, 11777, 10.1021/acs.jpcc.6b02175
Qiu, 2016, Phys. Status Solidi RRL, 10, 587, 10.1002/pssr.201600166
Xiao, 2015, Bull. Chem. Soc. Jpn., 88, 1250, 10.1246/bcsj.20150110
Xiao, 2015, Phys. Chem. Chem. Phys., 17, 18900, 10.1039/C5CP03102H
Qiu, 2017, Sol. Energy Mater. Sol. Cells, 159, 227, 10.1016/j.solmat.2016.09.022
Kumar, 2014, Adv. Mater., 26, 7122, 10.1002/adma.201401991
Eperon, 2015, J. Mater. Chem. A, 3, 19688, 10.1039/C5TA06398A
Beal, 2016, J. Phys. Chem. Lett., 7, 746, 10.1021/acs.jpclett.6b00002
Li, 2016, Chem. Mater., 28, 284, 10.1021/acs.chemmater.5b04107
Filip, 2016, J. Phys. Chem. C, 120, 166, 10.1021/acs.jpcc.5b11845
Pazoki, 2016, Phys. Rev. B, 93, 144105, 10.1103/PhysRevB.93.144105
Kresse, 1996, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Xiao, 2015, Appl. Phys. Lett., 106, 152103, 10.1063/1.4918294
Lany, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 78, 235104, 10.1103/PhysRevB.78.235104