Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality

Materials Horizons - Tập 4 Số 2 - Trang 206-216
Zewen Xiao1,2,3,4, Weiwei Meng1,5,2,3, Jianbo Wang6,7,5,8,9, David B. Mitzi10,11,12,13, Yanfa Yan1,2,3,4
1Department of Physics and Astronomy, and Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43607, USA
2The University of Toledo,
3Toledo
4and Wright Center for Photovoltaic Innovation and Commercialization
5School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan 430072, China
6Center for Electron Microscopy
7MOE Key Laboratory of Artificial Micro- and Nano-structures
8Wuhan 430072
9and Institute for Advanced Studies
10Department of Mechanical Engineering and Materials Science, and Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
11Duke University
12Durham
13and Department of Chemistry

Tóm tắt

The concept of electronic dimensionality,i.e., the connectivity of the atomic orbitals that comprise the lower conduction band and upper valence band, is introduced to better account for the device performance of the perovskite-based solar cells.

Từ khóa


Tài liệu tham khảo

Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r

National Renewable Energy Laboratory (NREL), http//www.nrel.gov/ncpv/images/efficiency_chart.jpg, accessed August 12, 2016

Zhou, 2014, Science, 345, 542, 10.1126/science.1254050

Jeon, 2015, Nature, 517, 476, 10.1038/nature14133

Yang, 2015, Science, 348, 1234, 10.1126/science.aaa9272

Saliba, 2016, Science, 354, 206, 10.1126/science.aah5557

Hao, 2014, Nat. Photonics, 8, 489, 10.1038/nphoton.2014.82

Noel, 2014, Energy Environ. Sci., 7, 3061, 10.1039/C4EE01076K

Lee, 2016, J. Am. Chem. Soc., 138, 3974, 10.1021/jacs.6b00142

Liao, 2016, Adv. Mater., 28, 9333, 10.1002/adma.201602992

Park, 2015, Adv. Mater., 27, 6806, 10.1002/adma.201501978

Lyu, 2016, Nano Res., 9, 692, 10.1007/s12274-015-0948-y

Sun, 2016, APL Mater., 4, 31101, 10.1063/1.4943680

Lehner, 2015, Chem. Mater., 27, 7137, 10.1021/acs.chemmater.5b03147

Slavney, 2016, J. Am. Chem. Soc., 138, 2138, 10.1021/jacs.5b13294

Maughan, 2016, J. Am. Chem. Soc., 138, 8453, 10.1021/jacs.6b03207

Meng, 2016, Chem. Mater., 28, 821, 10.1021/acs.chemmater.5b04213

Hong, 2016, J. Phys. Chem. C, 120, 6435, 10.1021/acs.jpcc.6b00920

Saparov, 2016, Chem. Mater., 28, 2315, 10.1021/acs.chemmater.6b00433

Giustino, 2016, ACS Energy Lett., 1, 1233, 10.1021/acsenergylett.6b00499

Yin, 2014, Adv. Mater., 26, 4653, 10.1002/adma.201306281

Yin, 2015, J. Mater. Chem. A, 3, 8926, 10.1039/C4TA05033A

Yin, 2015, J. Phys. Chem. C, 119, 5253, 10.1021/jp512077m

Ganose, 2016, Chem. Commun., 52, 10.1039/C6CC06475B

Saparov, 2016, Chem. Rev., 116, 4558, 10.1021/acs.chemrev.5b00715

Stoumpos, 2013, Inorg. Chem., 52, 9019, 10.1021/ic401215x

Zhang, 2014, Sci. Rep., 4, 6954, 10.1038/srep06954

Lee, 2014, J. Am. Chem. Soc., 136, 15379, 10.1021/ja508464w

Saparov, 2015, Chem. Mater., 27, 5622, 10.1021/acs.chemmater.5b01989

Harikesh, 2016, Chem. Mater., 28, 7496, 10.1021/acs.chemmater.6b03310

Hebig, 2016, ACS Energy Lett., 1, 309, 10.1021/acsenergylett.6b00170

McClure, 2016, Chem. Mater., 28, 1348, 10.1021/acs.chemmater.5b04231

Wei, 2016, Mater. Horiz., 3, 328, 10.1039/C6MH00053C

Deng, 2016, J. Mater. Chem. A, 4, 12025, 10.1039/C6TA05817E

Kim, 2016, Angew. Chem., Int. Ed., 55, 9586, 10.1002/anie.201603608

Xiao, 2016, J. Phys. Chem. Lett., 7, 3903, 10.1021/acs.jpclett.6b01834

Öz, 2016, Sol. Energy Mater. Sol. Cells, 158, 195, 10.1016/j.solmat.2016.01.035

Krishnamoorthy, 2015, J. Mater. Chem. A, 3, 23829, 10.1039/C5TA05741H

Smith, 2014, Angew. Chem., Int. Ed., 126, 11414, 10.1002/ange.201406466

Slavney, 2016, Inorg. Chem.

Mitzi, 1999, Prog. Inorg. Chem., 48, 1

Mitzi, 2001, J. Chem. Soc., Dalton. Trans., 1, 10.1039/b007070j

Knutson, 2005, Inorg. Chem., 44, 4699, 10.1021/ic050244q

Ishihara, 1994, J. Lumin., 60–61, 269, 10.1016/0022-2313(94)90145-7

Tanaka, 2003, Sci. Technol. Adv. Mater., 4, 599, 10.1016/j.stam.2003.09.019

Papavassiliou, 1996, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 286, 231, 10.1080/10587259608042291

Ishihara, 1990, Phys. Rev. B: Condens. Matter Mater. Phys., 42, 11099, 10.1103/PhysRevB.42.11099

Xiao, 2016, J. Phys. Chem. Lett., 7, 1213, 10.1021/acs.jpclett.6b00248

Umeyama, 2016, Chem. Mater., 28, 3241, 10.1021/acs.chemmater.6b01147

Quan, 2016, J. Am. Chem. Soc., 138, 2649, 10.1021/jacs.5b11740

Stoumpos, 2016, Chem. Mater., 28, 2852, 10.1021/acs.chemmater.6b00847

Cao, 2015, J. Am. Chem. Soc., 137, 7843, 10.1021/jacs.5b03796

Koutselas, 1997, Synth. Met., 86, 2171, 10.1016/S0379-6779(97)81081-8

Yunakova, 2012, Opt. Spectrosc., 112, 91, 10.1134/S0030400X12010249

Mitzi, 1994, Nature, 369, 467, 10.1038/369467a0

Mitzi, 1995, Science, 267, 1473, 10.1126/science.267.5203.1473

Papavassiliou, 1994, Solid State Commun., 91, 695, 10.1016/0038-1098(94)00435-8

Stoumpos, 2015, J. Am. Chem. Soc., 137, 6804, 10.1021/jacs.5b01025

Sun, 2014, J. Mater. Chem., 2, 303, 10.1039/C3TA14132B

Lu, 2016, RSC Adv., 6, 86976, 10.1039/C6RA18534G

Shannon, 1976, Acta Crystallogr., A32, 751, 10.1107/S0567739476001551

Travis, 2016, Chem. Sci., 7, 4548, 10.1039/C5SC04845A

Abulikemu, 2016, J. Mater. Chem. A, 4, 12504, 10.1039/C6TA04657F

Vigneshwaran, 2016, Chem. Mater., 28, 6436, 10.1021/acs.chemmater.6b02315

Hoye, 2016, Chem. – Eur. J., 22, 2605, 10.1002/chem.201505055

Eckhardt, 2016, Chem. Commun., 52, 3058, 10.1039/C5CC10455F

Singh, 2016, ACS Appl. Mater. Interfaces, 8, 14542, 10.1021/acsami.6b02843

Huang, 2016, J. Phys. Chem. C

Sun, 2016, Angew. Chem., Int. Ed., 55, 11854, 10.1002/anie.201606079

Zhang, 2016, Nano Res., 9, 2921, 10.1007/s12274-016-1177-8

Machulin, 2004, Low Temp. Phys., 30, 964, 10.1063/1.1820036

Trots, 2008, J. Phys. Chem. Solids, 69, 2520, 10.1016/j.jpcs.2008.05.007

Yeh, 1993, Acta Crystallogr., Sect. B: Struct. Sci., 49, 806, 10.1107/S0108768193003246

Raptopoulou, 2002, Zeitschrift für Naturforsch. B, 57, 645, 10.1515/znb-2002-0609

Moller, 1960, K. Dan. Vidensk. Selsk., Mat.-Fys. Medd., 32, 1

Saidaminov, 2016, ACS Energy Lett., 1, 840, 10.1021/acsenergylett.6b00396

Umari, 2014, Sci. Rep., 4, 4467, 10.1038/srep04467

Yin, 2014, Appl. Phys. Lett., 104, 63903, 10.1063/1.4864778

Umebayashi, 2003, Phys. Rev. B: Condens. Matter Mater. Phys., 67, 155405, 10.1103/PhysRevB.67.155405

Kamminga, 2016, Chem. Mater., 28, 4554, 10.1021/acs.chemmater.6b00809

Xiao, 2016, Phys. Chem. Chem. Phys., 18, 25786, 10.1039/C6CP05302E

Mao, 2016, Chem. Mater., 28, 7781, 10.1021/acs.chemmater.6b03054

Safdari, 2016, J. Mater. Chem. A, 4, 15638, 10.1039/C6TA05055G

Liu, 2016, Synth. Met., 215, 56, 10.1016/j.synthmet.2015.11.028

Tsai, 2016, Nature, 536, 312, 10.1038/nature18306

Mitzi, 2001, Chem. Mater., 13, 3728, 10.1021/cm010105g

Xu, 2003, Inorg. Chem., 42, 2031, 10.1021/ic0261474

Baikie, 2013, J. Mater. Chem. A, 1, 5628, 10.1039/c3ta10518k

Quarti, 2016, Energy Environ. Sci., 9, 155, 10.1039/C5EE02925B

Geng, 2014, J. Phys. Chem. C, 118, 19565, 10.1021/jp504951h

Mousdis, 1998, J. Mater. Chem., 8, 2259, 10.1039/a802926a

Agiorgousis, 2014, J. Am. Chem. Soc., 136, 14570, 10.1021/ja5079305

Du, 2015, J. Phys. Chem. Lett., 6, 1461, 10.1021/acs.jpclett.5b00199

Volonakis, 2016, J. Phys. Chem. Lett., 7, 1254, 10.1021/acs.jpclett.6b00376

Filip, 2016, J. Phys. Chem. Lett., 7, 2579, 10.1021/acs.jpclett.6b01041

Xiao, 2016, ChemSusChem, 9, 2628, 10.1002/cssc.201600771

Savory, 2016, ACS Energy Lett., 1, 949, 10.1021/acsenergylett.6b00471

Kaltzoglou, 2016, J. Phys. Chem. C, 120, 11777, 10.1021/acs.jpcc.6b02175

Qiu, 2016, Phys. Status Solidi RRL, 10, 587, 10.1002/pssr.201600166

Xiao, 2015, Bull. Chem. Soc. Jpn., 88, 1250, 10.1246/bcsj.20150110

Xiao, 2015, Phys. Chem. Chem. Phys., 17, 18900, 10.1039/C5CP03102H

Qiu, 2017, Sol. Energy Mater. Sol. Cells, 159, 227, 10.1016/j.solmat.2016.09.022

Kumar, 2014, Adv. Mater., 26, 7122, 10.1002/adma.201401991

Eperon, 2015, J. Mater. Chem. A, 3, 19688, 10.1039/C5TA06398A

Beal, 2016, J. Phys. Chem. Lett., 7, 746, 10.1021/acs.jpclett.6b00002

Li, 2016, Chem. Mater., 28, 284, 10.1021/acs.chemmater.5b04107

Filip, 2016, J. Phys. Chem. C, 120, 166, 10.1021/acs.jpcc.5b11845

Pazoki, 2016, Phys. Rev. B, 93, 144105, 10.1103/PhysRevB.93.144105

Kresse, 1996, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169

Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Xiao, 2015, Appl. Phys. Lett., 106, 152103, 10.1063/1.4918294

Lany, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 78, 235104, 10.1103/PhysRevB.78.235104